ALGORITHMS FOR VLSI DESIGN AUTOMATION (ELECTIVE - II)

Course Code:15EC2214

Ρ C L 3 0 3

Pre requisites: VLSI Design

Course Outcomes: At the end of the course the student will be able to

- **CO1:** Modify the CAD design problems using algorithmic paradigms
- CO2: Illustrate Backend Design Concepts
- CO3: Illustrate about Modeling and Simulation of Digital Circuits
- different Logic Synthesis and its **CO4:** Summarize about verification
- **CO5:** Analyze physical design problems of FPGA,MCM

UNIT-I

(10-Lectures)

PRELIMINARIES& GENERAL PURPOSE METHODS FOR **COMBINATIONAL OPTIMIZATION:**

Introduction to Design Methodologies, Design Automation tools, Algorithmic Graph Theory, Computational Complexity, Tractable and **Intractable Problems**

General Purpose Methods for Combinational Optimization:

Backtracking, Branch and Bound, Dynamic Programming, Integer Linear Programming, Local Search, Simulated Annealing, Tabu search, Genetic Algorithms.

UNIT-II

LAYOUT COMPACTION:

Design Rules, Symbolic Layout, Problem Formulation, Algorithms for Constraint –graph Compaction.

Placement and Partitioning:

Circuit Representation, Wire-length Estimation, Types of Placement Problem, Placement Algorithms, Partitioning

Floor Planning:

Floor Planning Concepts, Shape Functions and Floor plan Sizing

(10-Lectures)

Routing:

Types of Local Routing Problems, Area Routing, Channel Routing, Introduction to Global Routing, Algorithms for Global Routing.

UNIT- III MODELLING AND SIMULATION:

Gate Level Modeling and Simulation, Switch level modeling and simulation.

UNIT- IV

LOGIC SYNTHESIS AND VERIFICATION:

Basic issues and Terminology, Binary –Decision diagram, Two – Level Logic Synthesis.

High Level Synthesis: Hardware Models, Internal representation of the input algorithm, Allocation, Assignment and Scheduling, Some Scheduling Algorithms, Some aspects of Assignment problem, High – level Transformations.

UNIT- V

PHYSICAL DESIGN AUTOMATION OF FPGA'S AND MCM'S:

FPGA technologies, Physical Design cycle for FPGA's partitioning and routing for segmented and staggered models.

Physical Design Automation of MCM's:

MCM technologies, MCM physical design cycle, Partitioning, Placement – Chip array based and full custom approaches, Routing – Maze routing, Multiple stage routing, Topologic routing, Integrated Pin –Distribution and routing, routing and programmable MCM's.

TEXT BOOKS:

- 1. S.H.Gerez, "Algorithms for VLSI Design Automation", WILEY student edition, John wiley& Sons (Asia) Pvt.Ltd. 1999.
- 2. NaveedSherwani, "Algorithms for VLSI Physical Design Automation", Springer International Edition 3rd edition, , 2005

48

(10-Lectures)

(10-Lectures)

(10-Lectures)

REFERENCES:

- 1. Hill & Peterson, "Computer Aided Logical Design with Emphasis on VLSI", John Wiley, 1993.
- 2. Wayne Wolf, "*Modern VLSI Design: Systems on silicon*", Pearson Education Asia, 2ND Edition, 1998.