PARALLEL ROBOTS (PROFESSIONAL ELECTIVE-V)

L

T

 \mathbf{C}

3

3 0

Course Outcomes: At the end of the course, the student will be able to

Course Code: 20ME1257

CO1: describe generalized parallel manipulators and its classification (L2)

CO2: determine the forward and inverse kinematic models of parallel manipulators (L3)

CO3: apply Jacobian analysis and identify the singularities in parallel manipulators (L3)

CO4: differentiate types of workspaces in parallel manipulators (L2)

CO5: discuss static analysis and calibration methods in parallel manipulators (L2)

UNIT I 10 Lectures

Introduction, Characteristics of classical robots, other types of architecture, Needs for robotics. **Generalized parallel manipulators:** definition, Parallel manipulators, fully parallel manipulators, Fully parallel manipulators analysis: Planar robots, General case. Classification of planar robots: 3DoF manipulators, Classification of parallel robots: 3 to 6 DoF manipulators.

Learning Outcomes: At the end of this unit, the student will be able to

- 1. Explain the characteristics of classical robots (L2)
- 2. differentiate parallel and fully parallel manipulators (L2)
- 3. describe the classification of parallel manipulators (L2)

UNIT II 10 Lectures

Position analysis of parallel manipulators: Introduction, Position analysis of a planar 3-RPR and 3-RPR parallel manipulator and spatial 3-DoF orientation mechanism: Geometry of the manipulator, inverse kinematics and direct kinematics.

Learning Outcomes: At the end of this unit, the student will be able to

- 1. describe the geometry of 3RPR parallel manipulator (L2)
- 2. solve inverse kinematics of 3RRR parallel manipulator (L3)
- 3. determine end-effector pose using forward kinematics of spatial 3-DoF orientation mechanism (L3)

UNIT III 10 Lectures

Jacobian analysis of parallel manipulators: Introduction, Jacobian matrices, singularity conditions, conventional Jacobian, Jacobian of a planar 3-RR parallel manipulator, inverse kinematic singularities, direct kinematic singularities and combined singularities.

Learning Outcomes: At the end of this unit, the student will be able to

- 1. determine Jacobian matrix of a planar 3-RRR parallel manipulator (L3)
- 2. explain singularity conditions (L2)
- 3. examine singularity poses of a planar 3-RRR parallel manipulator (L3)

UNIT IV 10 Lectures

Parallel manipulators workspace limits, representation and type: The different types of workspaces, orientation representation. **Workspace calculation methods:** Workspace calculation methods, discretisation method.

3-RPR Planar manipulator: Constant orientation workspace, Orientation workspace, Dextrous workspace, Maximal workspace.

Learning Outcomes: At the end of this unit, the student will be able to

- 1. explain workspace calculation methods (L2)
- 2. illustrate constant orientation workspace for 3-RPR Planar manipulator (L3)
- 3. differentiate between constant orientation dextrous and maximal workspace (L2)

UNIT V 10 Lectures

Statics of parallel manipulators: Free-body diagram approach, application of the principle of virtual work of planar 3-RR manipulator, stiffness analysis of parallel manipulators.

Calibration: General comparison of calibration methods, issues in calibration methods. External calibration: type of external measurements, calibration with direct kinematics, inverse kinematics, constant leg lengths, other geometrical elements and mechanical constraints.

Learning Outcomes: At the end of this unit, the student will be able to

- 1. determine stiffness matrix for planar 3-RRR manipulator (L3)
- 2. discuss the issues in calibration methods (L2)
- 3. describe external calibration using direct and inverse kinematics (L2)

Text books:

- 1. J. P. Merlet, *Parallel Robots*, Springer, 2006. (Unit-I, IV, V)
- 2. Lung-Wen-Tsai, *Robot Analysis: The Mechanics of Serial And Parallel Manipulators*, A Wiley-Interscience Publication, 1999. (Unit-II, III, V)

References:

1. Cecilia Norton, *Parallel Manipulators*, Nova Publishers, 2016.