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Chapter 1

INTRODUCTION

1.1 INTRODUCTION AND MOTIVATION:

The focus is on electricity and magnetism, including electric fields,
magnetic fields, electromagnetic forces, conductors and dielectrics.

Electromagnetics is the study of electric and magnetic phenom-
ena caused by electrical charges at rest or in motion.It is one of the
most important courses in electrical engineering. It can also be
regarded as the study of the interaction between electrical charges
at rest and in motion. It is a branch of electrical engineering or
physics in which electrical and magnetic phenomena are studied.

Mobile phone communication can not be explained by circuit
theory concepts alone. The source feeds into an open circuit be-
cause the upper tip of the antenna is not connected to any thing
physically, hence no current will flow and nothing will happen.This
cannot explain why communication can be established between
moving telephone units.

Since the beginning of the twentieth century,the study of elec-
tricity and magnetism has been in its mature stage of develop-
ment. A steady but ever slower accretion of knowledge has taken
place, so that the graph is asymptotically approaching a plateau.



1.1. INTRODUCTION AND MOTIVATION:

When a body of knowledge is in this stage it is called classical.
It should not be inferred from this that a classical subject is one
that is at best fruitless. There are still many unsolved problems
in electricity and magnetism

1. Why there are two kinds of charge . Only one kind of grav-
itational mass has been found so far. Is mass a simpler and
more fundamental property?

2. Must charge always be associated with mass? Mass always
is not associated with charge.

3. Charge is quantized. Why does the minimum quantity of
charge have the value it does have?

4. Why are electrical forces so overwhelmingly larger than grav-
itational forces?

Electrical force is 10 times the gravitational force.
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1.2. A NOTE TO THE STUDENT:

The commonly held view by students, expressed vehe-
mently , particularly recent survivors of the course is ,
that electromagnetics is difficult, complicated, and a mys-
terious discipline. It requires mastery of abstruse mathe-
matical techniques,. It also entails juggling a bewildering
variety of equations , laws and rules, they decide. FEven
an intense study has left them with only superficial grasp
of the concepts.

Few see the beauty of electromagnetics: not many appre-
citate the sitmplicity and and economy of its fundamen-
tal laws. A minority realize its wide ranging utility, the
breadth and scope of its applications. Only a minority
master it enough to be able to use its principles to un-
derstand or predict the capabilities and limitations of the
engineering systems they need to analyze or design.

1.2 A NOTE TO THE STUDENT:

1. Pay particular attention to vector analysis, the mathematical
tool for this course.

2. Do not attempt to memorize too many formulae . Try to
understand how the formulae are related.

3. Try to identify the key words or terms in a given definition
or law

4. Attempt to solve as many problems as possible. Prac-
tice is the best way to gain skill

Dr.K.Parvatisam 3
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1.2. A NOTE TO THE STUDENT:

Your brain should think that what you want to learn is important.
It is built to search, scan and wait for something to happen. It
is built that way and helps you to stay alive. You should know
what is important and what is not important. So when you want
to learn subject you should know that you have to study and
concentrate whether you like it or not.

What does it take to learn something? First you have to get it,
and make sure that yo do not forget it. pushing facts mechanically
into the head does not help. Learning is a lot more than text on
a page. The following are the principles of good learning:

1. Get-and keep - the reader’s attention
2. Use a conversational and personalized style
. Touch their emotions

3
4. Make it visual

5. Get the learner to think more deeply
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1.2.

A NOTE TO THE STUDENT:

Thinking about thinking:

Real learning takes place , that too quickly and more deeply, if you
pay attention to how you pay attention. Think about how
you think. Learn how you learn.

Nobody takes a course on learning. You are expected to learn, but
rarely taught to learn. The trick is to get the brain think that what
you are going to learn is important.

Ten Principles to bend the Brain:

1. Slow down. If you slow down you understand well. The
more you understand , the less you have to memorize.

2. Do the exercises. Write your own notes. Use pencil.
Physical activity while learning can increase learning.

3. Do not Do all Your Learning in One Place. Stand
up,stretch, move around , change chairs, change rooms.

4. Make what you want to learn the last thing that you
read before bed, or at least the last challenging thing.
Part of the learning ( especially the long term memory )
happens after you put down your book down. Brain needs
time for processing, so if you put something new, you loose
some of what you just learned.

5. Drink lots of water. Dehydration decreases cognitive func-
tion.

6. Talk about it and also loudly. Better try to explain it to
someone else loudly.

7. Listen to your brain . Know when the brain is overloaded.

8. Feel something. Get involved. Feeling nothing at all is bad.

Dr
G\

K Parlliere are 1o aumd questions. Somemmes e questions
Parvatisam
'P Collbgd M EdEiHdrthe | Kat6RsH s )

10. Shut your mouth and listen, suspending your judg-

ment, when you want to learn something from some other

person.




1.2. A NOTE TO THE STUDENT:

_ Attend and Pay
Lecture Time Attention

=
Take notes

Ask Questions
Try Problems
Do the suggested Activities
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1.3. APPLICATIONS OF ELECTROMAGNETIC FIELD THEORY:

1.3 APPLICATIONS OF ELECTROMAGNETIC

FIELD THEORY:

1. Microwaves 12. Remote sensing
2. Antennas 13. Induction Heating
3. Electrical Machines 14. Surface Hardening, Dielec-
4. Satellite Communications tric Heating
5. Plasmas 15. Enhance Vegetable Taste
. ' by Reducing Acidity
6. Fiber Optics
7. Bio-electromagnetics 16. Speed baking Of Bread
8 Nuclear Research 17. Phygics based signal pro-
cessing
9. Electro mechanical energy . .
conversion 18. Computer chip design
10. Radar 19. lasers
11. Meteorology 20. EMC/EMI Analysis
Dr.K.Parvatisam 7
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2.1. REVIEW OF COORDINATE SYSTEMS AND VECTOR
CALCULUS:

Chapter 2

REVIEW

2.1 REVIEW OF COORDINATE SYSTEMS
AND VECTOR CALCULUS:

2.1.1 Learning Objectives

f. To be able to describe the three coordinate systems we 1@
in describing fields: Cartesian, cylindrical, and spherical.

e To be able to manipulate vectors and perform common oper-
ations with them: decomposition, addition, subtraction, dot
products, and cross products.

e To be able to describe the fundamental meaning of integra-
tion in one, two, and three dimensions as a summation pro-
cess.

e To be able to describe the fundamental meaning of differen-
tiation.

e To be able to recognize situations where Taylor series should
be used, and to be able to demonstrate that you can carry
out a Taylor series expansion to first order.

Tobo—abicto unuelbbauu the blguumanw of—tire glaulenb
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2.1. REVIEW OF COORDINATE SYSTEMS AND VECTOR
CALCULUS:

2.1.2 Introduction:

In order to be able to handle with ease many of the elctromag-
netic quantities which are vectors, we must choose a coordinate
system. we will see how to resolve a given vector into components
in these coordinate systems and how to transform a vector from
one coordinate system into another.

We will discuss the significance of the gradient, divergence ,
and curl operations and prove divergence and Stoke’s theorems.

This chapter discusses about vector analysis which consists of

1. Vector algebra - addition, subtraction , and multiplication of
vectors

2. Vector calculus - differentiation and integration of vectors;
gradient,divergence, and curl operations.

This chapter discusses also about

1. Orthogonal coordinate systems- Cartesian, Cylindrical, and
spherical coordinates

2.1.3 COORDINATE SYSTEMS:

The dimension of space comes from nature. The measurement
of space comes from us. The laws of electromagnetics are inde-
pendent of a particular coordinate system. However application
of the laws to the solution of a particular problem imposes the
need to use a suitable coordinate system. It is the shape of the
boundary that determines the most suitable coordinate system to
use in its solution. To represent points in space we need a co-
ordinate system. The co-ordinate system may be orthogonal or
non-orthogonal. Coordinate systems can also be right handed or

Dr.K.Parvatisam 10
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2.1. REVIEW OF COORDINATE SYSTEMS AND VECTOR
CALCULUS:

left handed. We discuss only right handed, orthogonal coordinate
systems. The coordinate systems discussed are three dimensional

coordinate systems. The coordinate systems are defined by a set
of planes and/or surfaces. A coordinate system defines a set of
three reference directions at each and every point in space.The
origin of the coordinate system is the reference point relative to
which we locate every other point in space. A position vector
defines the position of a point in space relative to the origin.The
three reference directions are referred to as coordinate directions.
Unit vectors along the coordinate directions are called base vec-
tors. In any three dimensional coordinate system , an arbitrary
vector can be expressed in terms of a superposition of the three
base vectors. Different coordinate systems are different ways to
measure space.

2.1.3.1 RECTANGULAR CARTESIAN COORDINATE SYSTEM:

The rectangular Cartesian coordinate system is described by three
planes which are mutually perpendicular to each other. The three
planes intersect at a point 'O’ which is called the origin of the
coordinate system. There are three coordinate axes which are
usually denoted by x,y,z. Values of x,y,z are measured from the
origin. The three planes are

e x— constant plane ie yz plane
e y— constant plane ie xz plane

e 7— constant plane ie xy plane

Dr.K.Parvatisam 11
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2.1. REVIEW OF COORDINATE SYSTEMS AND VECTOR
CALCULUS:

A point in rectangular coordinate system is defined by (x,y, 2).
The limits for the coordinates are

—0 < <0 (2.1)
—o0 < y< (2.2)
—o0 < z2< (2.3)

The unit or base vectors are a,, a,, a,. The following relations
hold for the dot and cross products of the unit vectors

a; X ay,=a,
ay X a;=a,

a, X Gy = ay

a; ® a, =70
a, ® a,=
a, ® a,=
The differential length element is given by
dl = dza, + dya, + dza, (2.10)

The differential area elements are

( )

dxdya,

~/

ASpec = 4 dydzax

dzdzxa,
\ J

the differential volume element is

dv = dxdydz (2.11)

Dr.K.Parvatisam 12
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2.1. REVIEW OF COORDINATE SYSTEMS AND VECTOR
CALCULUS:

Figure 2.1: Cartesian rectangular coordinate system

“u
Z = const, :
) | ; ) s,
A
L. |‘ i P
A Pix v,z) | e sl=c
. 4
#‘\/ . /_: J‘ / :.:I' | @x:
i p | |
/ : €. ’ /f‘( ‘/ I
A AL L ds !
1 i ‘
I | I T S
e 1 q : : : Yy
T = COonsl. s /.' e ks
‘ AN p “da
" /" y=consL Y dy

2.1.3.2 CYLINDRICAL COORDINATE SYSTEM:

The cylindrical coordinate system is also defined by three mutually
orthogonal surfaces. They are a cylinder and two planes. One of
the planes is the same as the z = constant plane in the Cartesian
coordinate system. The second plane is orthogonal to the z =
constant plane and hence contains the z—axis . it makes an angle
¢ with the xz — plane. This plane is defined by ¢ = constant.The
third one is a cylinder whose axis is the z axis and has a radius p =
constant from the z — axis. So a point in cylindrical coordinates
is defined by (p, ¢, z). The limits for the coordinates are

0 < p <
0 < ¢ < 2r (2.12)

—o0 < 2z < o©

The unit or base vectors are a,, aganda, . The following rela-
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2.1. REVIEW OF COORDINATE SYSTEMS AND VECTOR
CALCULUS:

tions hold for the dot and cross products

a, X ag = a,
ag X a, = a, (2.13)
a, X a, = a4
a, ® ag = 0
ag ® a, = 0 (2.14)
a, ® a, = 0

The vector differential length element is given by
dley = dpa, + pdoay + dza, (2.15)

The three differential area elements are

( )

(pdg) (dz) a,

dScy = (dz) (dp) ag . (2.16)

(dp)  (pdd) a. |

See the fig. The area is pdodza,
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2.1. REVIEW OF COORDINATE SYSTEMS AND VECTOR
CALCULUS:

-t

ds = pdgdza

gy
P

Figure 2.2: Cylindrical area

See the fig. below. The area is dpdza,
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2.1. REVIEW OF COORDINATE SYSTEMS AND VECTOR
CALCULUS:

dz

dp
d5 = dodza,

pdg

Figure 2.3: Cylindrical area element

See the fig. below. The area element is pdpdoa.,
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2.1. REVIEW OF COORDINATE SYSTEMS AND VECTOR
CALCULUS:

Differential length, area, and velume

dp :
dp

P
ds = pdpddd,

pdg

Figure 2.4: Cylindrical area element

The differential volume element is given by
dve, = pdpdodz
See fig

(2.17)

Dr.K.Parvatisam 17
GVP College of Engineering ( Autonomous )



2.1. REVIEW OF COORDINATE SYSTEMS AND VECTOR
CALCULUS:

g

T [, Haay Mammad German CEiersily o Ca

Figure 2.5: Volume element in cylindrical coordinate system

Another view of cylindrical coordinate system:

&

X/ \

Figure 2.6: Cylindrical coordinate system
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2.1. REVIEW OF COORDINATE SYSTEMS AND VECTOR
CALCULUS:

A third view of cylindrical coordinate system:

| I =Coust.

@ = COnst. ™

Figure 2.7: Cylindrical coordinate system

2.1.3.3 SPHERICAL COORDINATE SYSTEM:

It is defined by two surfaces and one plane. The surfaces are a
sphere and a cone. The plane is ¢ = constant plane. The sphere
is centered at the origin and has a radiusr = constant . The cone
has its vertex at the origin and its surface is symmetrical about
the z — axis, so that the angle 6 which the conical surface makes
with the z — axis is constant. A point in spherical co-ordinates is
represented by p = (r,0 and ¢) . The limits for the coordinates
are

Dr.K.Parvatisam 19
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2.1. REVIEW OF COORDINATE SYSTEMS AND VECTOR
CALCULUS:

0 < r <
0< 6 < = (2.18)

0 < ¢ < 27

The differential length is given by
dlspp, = dra, + rdfay + rsinfdea, (2.19)

The differential area element is given by

( )

rdrdfag
dssph = § r2sin OdOda, ¢ (2.20)
\ r sin Odrdoay )
The differential volume element is given by
dvgp, = r* sin Odrdode (2.21)

See the fig. below for the volume and area elements

Dr.K.Parvatisam 20
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2.1. REVIEW OF COORDINATE SYSTEMS AND VECTOR
CALCULUS:

Differential length, area, and volume

rsm &g rd@

—r

dr ds = rdrdfa,

N
1 # #FAGr. Haay Hammas Sesmas Dniersy B Caro

g dS =r" sinfdbdgd, dS = r sin édvdga)

Figure 2.8: Spherical volume and area elements

Spherical coordinate system
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2.1. REVIEW OF COORDINATE SYSTEMS AND VECTOR
CALCULUS:

Figure 2.9:

z

@ = COnsL.

R =const

Figure 2.10: Spherical coordinate system
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2.1. REVIEW OF COORDINATE SYSTEMS AND VECTOR

CALCULUS:
Cartesian Cylindrical Spherical
Orthogonal Three Planes A Cylinder and two Planes | A Sphere , a Cone , and a P
Surfaces
Geometry Fig. Fig. Fig.
Coordinates x,Y, 2 P, 0,2 r,0,¢
—o0o <z <0 0<p< 0<r<oo
Limits Of —00 <y < 0 0<¢<2r 0<h<n
Coordinates
—00 <2< 00 —o00 < z< o0 0< <27
Differential | dza, + dya, + dza, dpa, + pdpay + dza, dra, + rdfay + r sin Odoa,
Length
elements
dxdya, pdpdoa, rdrdfag
Differential dydza, pdedza, 2 sin Odldoa,
Areas
dzdza, dpdzag rsin Odrdoay
Differential dxdydz pdpdodz 2 sin Odrdfde
volume

Table 2.1: Summary of Cartesian, Cylindrical and spherical coordinate sys-
tems

Dot products of vectors at a point (r, 6, ¢)
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2.1. REVIEW OF COORDINATE SYSTEMS AND VECTOR

CALCULUS:
ay | Gy | Gz | @, ag a, ag ag
az | 1 ] 0| 0 | cosg | —sing | sinfcos¢ | cosfcose || —sing
Qy 1] 0 |sing | cos¢ | sinflsing | cosfcose || coso
a, 1 0 0 cos —sin6 0
a, 1 0 sin 6 cosf 0
ag 1 0 0 1
a, 1 0 0
Qg 1 0

Table 2.2: Dot products of unit vectors at a point

Cross product of unit vectors at a point (7,0, ¢)
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2.1. REVIEW OF COORDINATE SYSTEMS AND VECTOR

CALCULUS:
ap | ay | a, a, gy ay, ag
agz | 0 | a, | —a, | singa, | cos¢a, | sinfsinepa, — cosba, cos 0 sin ¢a, + sin Oa,
Qy 0 | a, | —cosoa, | sin¢ga, | —sinf cos ¢a, + cosba, | — cos b cos pa, — sinba,
a, 0 ag —a, sin fa, cos fay
a, 0 a, —cos fag sin fa,
ag 0 —sinfa, + cosba, —cosfa, — sinfa,
a, 0 g
ag 0

Table 2.3: Cross products of unit vectors at a point

2.1.4 TRANSFORMATION OF COORDINATES:

2.1.4.1

CARTESIAN TO CYLINDRICAL:

If a vector is expressed in Cartesian coordinates as A = A a, +

Aya, + Aa,
T = pcoso
Yy = psin @ (2.22)
z2=2z
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2.1. REVIEW OF COORDINATE SYSTEMS AND VECTOR
CALCULUS:

p=at+y’
¢ = arctan £ (2.23)

Z =2z

then the equivalent vector in cylindrical coordinates is given by

A, = Azcosp+ Aysing
Ay = —A,singp + Aycos (2.24)
A, =A,
2.1.4.2 CARTESIAN TO SPHERICAL:
A, = A,sinfcos ¢ + Aysinfsing + A, cost
Ap = A, cosOcosp + Aycostsing — A, sinf (2.25)

Ay = —A,sing + A, cos ¢

r=/a2+y2+ 22
f = arccos ——=2—— (2.26)

’:L’2+y2+2’2

— Yy
¢ = arctan £
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2.1. REVIEW OF COORDINATE SYSTEMS AND VECTOR
CALCULUS:

x =rsinfcos ¢

y = rsin @ sin ¢ (2.27)
z=rcosf
2.1.4.3 CYLINDRICAL TO CARTESIAN:
X = pcos o
Yy = psin ¢ (2.28)
z2 =2z
A A,x—Agy
z 22 4y2
A = Ayy+Apx (229)
Yy /12442
A, =A,
2.1.4.4 CYLINDRICAL TO SPHERICAL:
r = /p2 + »2
0 = arctang (2.30)
¢=9
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2.1. REVIEW OF COORDINATE SYSTEMS AND VECTOR
CALCULUS:

A, =A,sinf + A, cost

Ap = A,cost — A,sind (2.31)
Ay = Ay
where
cos = ———
Ve (2.32)
sinﬁ = \/ﬁ

2.1.4.5 SPHERICAL TO CARTESIAN:
x = rsinf cos ¢

y = rsin 6 cos ¢ (2.33)

z=1rcosf

A — Arzr/ 2?2 +y?+Agrz—Apyr/ 22 +y2+22
x

V(@ +y?) (22 4+y2+22)
A — Ay 22 +y2+ Agyz+ Apan/ 22 +y%+22 (2.34)
Y V(@) (@2 y2+22)
A — Apz—Agr/ x2+y>?
z [22 2422
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2.1. REVIEW OF COORDINATE SYSTEMS AND VECTOR
CALCULUS:

2.1.4.6 SPHERICAL TO CYLINDRICAL:

p=rsinf
b =¢ (2.35)
z =rcosf

A = A,rsin0+Agz

T st 0e2
Ay = Ay (2.36)

Az _ Apz—Agrsing

\/ 72 sin? 6+ 22
2.1.4.7 COORDINATE TRANSFORMATIONS IN MATRIX FORM:

Rectangular to cylindrical:

A, cosg sing 0 A,
Ap | = | —sing cos¢ 0 A, (2.37)
A, 0 0 1 A,

Rectangular to Spherical:
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2.1. REVIEW OF COORDINATE SYSTEMS AND VECTOR
CALCULUS:

_ A, | — sinffcos¢ sinflsin¢g  cost 1 A, —

Agp | = | cosfcos¢p —cosfsing —sinf Ay (2.38)
_A¢_ I — sin ¢ COS @ 0 | _AZ_
Cylindrical to rectangular:

Aa v 1:§+y2 RV xi/—&-yz 0 A
A, | = \/xng \/xf—l—y? Ay (2.39)
| A 0 0 L 4]
Cylindrical to spherical:
-Ar- -sinﬁ 0 cosf - -Ap-
Ag | = | cosf 0 —sinf Ay (2.40)
I Ay | I 0 1 0 11 A, |

Spherical to rectangular:

Dr.K.Parvatisam 30
GVP College of Engineering ( Autonomous )



2.1. REVIEW OF COORDINATE SYSTEMS AND VECTOR
CALCULUS:

A, sinf cos¢ sin@sin ¢ cos A,
Ay, | = | cosfcos¢ —cosbsing 0—sind Ay
A, — sin ¢ coS @ 0 Ay
(2.41)
Spherical to cylindrical:
p z 0

A/) \/p2—|-22 \/p2+22 Ar

Ay, | =] 0 0 1| | A (2.42)

A, - L 0 A

i i i \/p2+22 \/p2+z2 ] L ¢ i
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2.2. COORDINATE COMPONENT TRANSFORMATIONS:

2.2 COORDINATE COMPONENT TRANSFOR-
MATIONS:

Rectangular to Cylindrical

r = pcoso
= psing
z = z
A, cos¢ sing 0 A,
Ay | = | —sing cos¢ 0 A,
A, 0 0 1 A,
Rectangular to Spherical

xr = rsinfcos¢

y = rsinfsing

z = rcosf
A, sinfcos¢ sinfsing cosd A,
Ay | = | cosfcos¢p cosfsing —sinf A,
Ay —sing cos ¢ 0 A,

Table 2.4: Rectangular to cylindrical and spherical
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2.2. COORDINATE COMPONENT TRANSFORMATIONS:

Cylindrical to Rectangular:

p = Vi+y?

¢ = arctany

x
z = z
A = —— A
z \/xz_,_yz \/x2+y2 P
Ay - \/zg—i-gﬂ \/l’f-‘y—yQ A¢
A, 0 0 1 A,
Cylindrical to spherical:
p = rsinf
¢ = ¢
z = rcosf
A, sinf 0 cos6 A,
Ag | = | cos8 0 —sinf Ay
A, 0 1 0 A,

Table 2.5: Cylindrical to Rectangular and Spherical

Dr.K.Parvatisam 33
GVP College of Engineering ( Autonomous )



2.2. COORDINATE COMPONENT TRANSFORMATIONS:

Spherical to Rectangular:

r = ’x2+y2+22
/x2_|_y2

6 = arctan
z
¢ = arctan J
T
A x Tz _ Y
x \/m2+y2+z2 \/x2+y2\/x2+y2+22 \/x2+y2
A = Yy Yz x
4 \/zz+y2+22 \/$2+y2 \/$2+y2+zz \/952+y2
A z . V $2+y2 0
| 2] i \/x2+y2+22 \/x2+y2\/x2+y2+z2 ]

Spherical to Cylindrical:

r— P2

0 = arctan[—)
z
¢ = ¢
A v P§+22 Vv p§+z2 A
Ay | = 0 0 1 Ap
z __p
L A, ] L \/p2+Z2 \/p2+22 0 1L A¢ ]

Table 2.6: Spherical to Rectangular and Cylindrical
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2.3. PARTIAL DERIVATIVES OF UNIT VECTORS:

2.2.0.1 COORDINATE TRANSFORMATION PROCEDURE:

1. Transform the component scalars into the new coordinate
system

2. Insert the component scalars into the coordinate transforma-
tion matrix and evaluate

3. steps 1 and 2 can be performed in either order

2.3 PARTIAL DERIVATIVES OF UNIT VEC-
TORS:

(All derivatives not listed in the table are zero)

ox oy 0z ap ¢

in ¢ cos ¢
da,/ —=Fay Cag 0 0 ag
Jday/ %ﬁap — %bar 0 0 —a,
da,/ L(—sin ¢ag + cos pay) 1(cos pay + cosfsin gag) | =2la, | ©qy | sinfa,
Oay/ Cor—te (— sin ¢pas — sin 6 cos ¢a,.) CO: % (cos pays — sin @ sin ga, #ar %Osear cos fa

Table 2.7: Partial deviates of unit vectors
Example:

1. Transform each of the following vectors to cylindrical coor-
dinates at the point specified

(a) ba, at P(p=4,¢ = 120°, 2 = 2)
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2.3. PARTIAL DERIVATIVES OF UNIT VECTORS:

(b) ba, at Q(x =3,y =4,z = —1)
(¢) A =4a, —2a, —4a, at Q(2,3,5)

Ans:

a) The p component is 5a, ® a, = 5cos ¢
The ¢ component is 5a, ® ag = —5sin ¢
The z component is 5a, e a, = 0

so P = 5cos ¢a, — b sin pagwhere ¢ = 120°

Poy = —2.5a, — 4.33a,

b) @ =5cos¢pa, — 5sin gpa, where ¢ = arctan% = 53.13°

Q = 3a, — 4a,

c) A = 4a, — 2a, — 4a,. Transforming to cylindrical coordi-
nates the components are

A, =4cos¢p —2sin¢
Ay = —4sing —2cos ¢
A, =—4

¢ = arctan% = 56.3" cos¢ =
0.55, sin¢ = 0.832

Ay = 0.54a, — 4.44a4 — 4a,
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2.3. PARTIAL DERIVATIVES OF UNIT VECTORS:

Problems: Coordinate Transformations

1. Transform the following vector
G="Cq, (2.43)
(Y

into spherical coordinates.

2. Transform the vectorB = ya, — xa, + za, into cylindrical

coordinates.
3. Give
(a) The cartesian coordinates of the point C'(p = 4.4,¢ =
—115°, 2 = 2)
(b) The cylindrical coordinates of the point D(z = —3.1,y =
2.6,z = —3)

(c) Specify the distance from C' to D
4. Transform to cylindrical coordinates

(a) F' = 10a, — 8ay + 6a, , at point P(10, —8,6)
(b) G = (2 + y)a, — (y — 4x)a, at point Q(p, ¢, 2)
(¢) Give the cartesian components of the vector H = 20a, —

10as + 3a, at P(r =5,y =2,z = —1)

5. Given the two points C'(—3,2,1) and D(r = 5,0 = 20", ¢ =
~70°), find
(a) The spherical coordinates of C
(b) The cartesian coordinates of D

(c) the distance from C to D
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2.3. PARTIAL DERIVATIVES OF UNIT VECTORS:

6. Transform the following vectors to spherical coordinates at
the points given
(a) 10a, at P(x =3,y =2,z =4)
(b) 10a, at Q(p =5, ¢ = 30%.z = 4)
(¢) 10a, at M(r =4,60 = 110° ¢ = 120°)

7. Given points A(p = 5,0 = 70",z = —3) and B(p = 2,¢ =
—30", 2 = 1) find
(a) A unit vector in cartesian coordinates at A directed to-

wards B

(b) A unit vector in cylindrical coordinates at A directed
towards B

(c) A unit vector in cylindrical coordinates at B directed
towards A

8. Express the vector field D = (2% 4+ y*) " (za, + yay)

(a) In cylindrical components and cylindrical variables

(b) Evaluate D at the point where p = 2, ¢ = 0.27(rad),
z = 5. Express the result in both cylindrical and carte-
slan components.

9. Determine an expression for

(a) a, in spherical coordinates at P(r = 0.8,0 = 30°, ¢ =
459)
(b) Express a, in cartesian components at P.

10. Determine the cartesian components of the vector from

(a) A(r = 5,0 = 110° ¢ = 200°) to B(r = 7,0 = 30°,¢ =
70)
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2.3. PARTIAL DERIVATIVES OF UNIT VECTORS:

(b) Find the spherical components of the vector at P(2, —3,4)
extending to Q(—3,2,5)

(¢) I D = ba, — 3ag + 4ay, find D.a, at M(1,2,3)
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2.4. REVIEW OF VECTOR ANALYSIS:

2.4 REVIEW OF VECTOR ANALYSIS:

Scalars refer to quantities whose value may be represented by a
single real number. Examples are

e Temperature

e Mass

e Density, Pressure
e Volume

e Volume Resistivity
e Voltage

A vector quantity has both a magnitude and a direction in space.
Examples are

e Force
e Velocity
e Acceleration

e Electric Field Intensity

2.4.1 VECTOR COMPONENTS AND UNIT VECTORS:

First let us consider Cartesian coordinate system. A vector can be
identified by giving the three component vectors, lying along the
three coordinate axes whose vector sum must be the given vector.
So a vector r can be represented in terms of unit vectors as

r = xa, + ya, + za, (2.44)
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2.4. REVIEW OF VECTOR ANALYSIS:

As an example the vector from the origin (0,0,0) to a point
P(1,2,3) is represented as

rp = a; + 2a, + 3a, (2.45)

A vector from P(1,2,3) to Q(2,—2,1) is therefore
Rpg =ro—rp = (2—1)ay+(—2—-2)a,+(1-3)a, = a,—4a,—2a,
(2.46)

The vectors rp,rg, and Rpg are shown in figure.

Figure 2.11: Vector components of a vector

Any vector A can be represented by A = A,a, + Aya, + Aa,
. The magnitude of A is given by

A = \/Ag + A2 4 A2 (2.47)
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2.4. REVIEW OF VECTOR ANALYSIS:

Each of the three coordinate systems will have its three funda-
mental and mutually perpendicular unit vectors which are used
to resolve any vector into its component vectors.

A unit vector in the direction of A is given by

_ Agag + Ayay + Aga,

- (2.48)
\/A?L. + A2 4 A2

aA

We will use the lower case letter a with an appropriate subscript
to designate a unit vector in a specified direction.

2.4.1.1 THE DOT OR SCALAR PRODUCT:

Given two vectors A and B, the dot or scalar product is defined
as the product of the magnitude of A , the magnitude of B, and
the cosine of the angle between them,

Ae B =|A||B|cosbup (2.49)
The result is a scalar and also
AeB=BeA (2.50)

The most important applications of dot product are work done
W= /Fodl (2.51)
and calculation of flux ¢ from B the flux density

b= //Bods (2.52)

An expression for the dot product not involving the angle is

AeB=AB,+A,B,+A.B, (2.53)
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2.4. REVIEW OF VECTOR ANALYSIS:

A vector dotted with itself yields the magnitude squared of that
particular vector

AeA=A%=|Af (2.54)

Another important application of the dot product is that of finding
the component of a vector in a given direction. Refer to fig. . The
component of B in the direction specified by the unit vector a is
given by

Bea=|B|l|a|cosbsp = |B|cosbp, (2.55)

“'il ;" il i
(1) (&)

Figure 2.12: Component of vector B in the direction of a

The sign of the component is positive if 0 < 0p, < 90" and
negative whenever 90° < g, < 180" . In order to obtain the
component of a vector B in the direction of a, we simply take the
dot product of B with a, or B, = Bea,and the component vector
is Bya, or (B e a,)a, .So the problem of finding the component
of a vector in any desired direction boils down to the problem of
finding a unit vector in that direction.

The term projection also is used with the dot product . Thus
B e a is the projection of B in the direction of a .
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2.4. REVIEW OF VECTOR ANALYSIS:

2.4.1.2 THE CROSS PRODUCT:

Given two vectors A and B we can define the cross product, or
the vector product of A and B as

Ax B (2.56)

The cross product is a vector. The magnitude of A x B is equal
to the product of the magnitudes of A, B and the sinof the smaller
angle between A and B. The direction of A x B is perpendicular
to the plane containing A and B and is along that one of the two
possible normals which is in the direction of advance of a right
handed screw as A is turned into B through the smaller angle.
The direction is illustrated in Fig.

L

04z B

IAxB

Figure 2.13: Cross product

As an equation

Ax B = |A||B|sinfsp an (2.57)

Dr.K.Parvatisam 44
GVP College of Engineering ( Autonomous )



2.4. REVIEW OF VECTOR ANALYSIS:

Ax B=—(BxA) (2.58)
Also
AxB = (A,B.—A.,B))a,+(A.B,— A, B.)a,+ (A, B,— AyB;)a.
(2.59)
Which can be written as
a; Qy Q
AxB=|4, A, A, (2.60)
Baj BY Bz

2.4.2 VECTOR CALCULUS, GRADIENT, DIVERGENCE
AND CURL:

2.4.2.1 LINE INTEGRALS OF VECTORS:

Certain parameters in electromagnetics are defined in terms of the
line integral of a vector field component in the direction of a given
path. The component of a vector along a given path is found
using the dot product. The resulting scalar function is integrated
along the path to obtain the desired result. The line integral of
the vector A along the path L is then defined as

/ Aedl (2.61)

L

see the fig.
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2.4. REVIEW OF VECTOR ANALYSIS:

Figure 2.14: Line integral of a vector A

dl = a;dl

a; = Unit vector in the direction of the path L

dl = Differential element of length alongthe path L
Aedl=Aeqdl = Al

A; = Component of A along the path L

/ﬁ.ﬂ:/mm (2.62)

L
whenever the path L is a closed path, the resulting line integral
of A is defined as the circulation of A around L and is written as

%A.m:%&& (2.63)

L L

2.4.2.2 SURFACE INTEGRALS OF VECTORS:

Certain parameters in electromagnetics are defined in terms of
the surface integral of a vector field component normal to the
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2.4. REVIEW OF VECTOR ANALYSIS:

surface. The component of a vector normal to the surface is found
using the dot product . The resulting scalar function is integrated
over the surface to obtain the desired result. The surface integral
of the vector A over the surface S ( also called the flux of A
through S ) is then defined as

//S Aeds (2.64)

see fig.

Figure 2.15: Surface Integral of A over S

dS = a,ds

a, = Unit vector normal to the suface S

dS = Differential surface element on S
Aeds= A.a,ds = A,ds

A, Component of A normal to the surface S
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2.4. REVIEW OF VECTOR ANALYSIS:

//SA ods = //SAds (2.65)

For a closed surface S, the resulting surface integral of A is
defined as the net outward flux of A through S assuming that the
unit normal is an outward pointing normal to S

yﬁA ods — %Ands (2.66)

S S

2.4.2.3 THE GRADIENT

A single valued scalar function of the space coordinates x,y, z is
denoted by say V. It is a function of position or location only.
The points in space at which V' has a given value, for example
C, define a surface which is referred to as constant value surface.
Any number of such surfaces, for various assumed values of the
constant C, may be mapped. Such a map shows how the function
V varies. The regions where the surfaces are far apart indicate
that the functions is slowly varying and if they are closely spaced
it indicates that the function is rapidly varying.The rate at which
V' varies in any given direction at a given point in space is called
the directional derivative of V.

It can be seen that the directional derivative of V' is a maximum
at a given point if the derivative is taken in a direction normal to
the constant value surface passing through that point, because the
distance between neighboring surfaces is smallest in the normal
direction. This maximum value of the directional derivative is
called the normal derivative of V.

Let V' be a function of rectangular coordinates V(z,y, z). A

Dr.K.Parvatisam 48
GVP College of Engineering ( Autonomous )



2.4. REVIEW OF VECTOR ANALYSIS:

differential change in this function is given by

ov ov oV

dV = %d:c + 6_ydy + Edz (2.67)
If the differential distance is dl = dza, + dya, + dza, then
dV =G edl (2.68)
where ooV oV
G = 300 T 3y ay + 50 (2.69)

then the incremental change in V' can be written as
dV = |G| |dl| cos (2.70)

where 6 is the angle between G and the length vector dl which
is along some chosen path. Clearly the maximum space rate of
change of V' will occur when 6 = 0, that is if we move in the
direction of G. The direction in which this maximum space rate
of change of V' takes place is called the gradient of V. Usually
the gradient of V' is denoted by VV. Movement along lines of
constant V' result in no change in V' or dV = 0. This shows that
G = VV is normal to the constant V' surface.

2.4.2.4 PROPERTIES OF GRADIENT OF V(VV):

1. The magnitude of VV equals the maximum rate of change
of V' per unit distance.

2. VV points in the direction of maximum rate of change of V'

3. VV at any point is perpendicular to the constant V' surface
that passes through that point.
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2.4. REVIEW OF VECTOR ANALYSIS:

4. The projection or component of VV in the direction of a unit
vector a is VV e a and is called the directional derivative of
V' in the direction of a. gradient provides both the direction
in which V' changes most rapidly and the magnitude of the
maximum directional derivative of V/

5. If A=VV | then V is called the scalar potential of A

2.4.2.5 EXPRESSION FOR GRADIENT IN DIFFERENT CO-
ORDINATE SYSTEMS:

oV oV oV

Cartesian VV = &a" + @_yay + Eaz (2.71)
1
Cylindrical VV = g—Zap + ;g—z% + %—\Z/az (2.72)
1 1
Spherical VV = N Al N (2.73)

Ear+;89a9+ rsin 6 8¢a¢

2.4.3 FLUX AND DIVERGENCE OF A VECTOR FIELD:
2.4.3.1 SURFACE INTEGRAL AND FLUX OF A VECTOR FIELD:

A closed surface is a boundary which divides a volume into two
parts, an inside and an outside . The surface itself is unbounded.
An elemental area is represented by ds, a vector of magnitude |ds|
which points in the direction from inside of the volume towards
the outside(outward drawn normal).

An open surface is one which is bounded by a curve. The page
of a book is an open surface. the magnitude of the area is |ds]|
and the normal is one of the two normals. The direction which
is chosen as positive, is related to the positive sense of traversing
the perimeter by the following convention. If a right hand screw is
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2.4. REVIEW OF VECTOR ANALYSIS:

turned in such a direction as to follow in general, the positive sense
of the perimeter, then the screw will advance in the direction of
the positive normal to the surface. I f the travel is in the counter
clockwise direction the normal is up. If clockwise the normal is
down.

The flux of a vector field F' is defined for an open surface X by
fz F e ds . For a closed surface the flux is defined as ¢ F o ds

2.4.3.2 THE DIVERGENCE:

The divergence of a vector function F' at a point is defined as

%%F . ds] (2.74)

2.4.3.3 EXPRESSION FOR DIVERGENCE IN CARTESIAN CO-
ORDINATES:

Ve F = lim

v—0

Consider a differential cube of volume dv = dzdydz See fig. 2.16

Av=AxAyA- [7_, ;
e =

3 - -
P=(x,.¥.2,) Ay

Figure 2.16: Derivation for divergence in Cartesian coordinates
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2.4. REVIEW OF VECTOR ANALYSIS:

The cube is placed in a vector field D. The total flux passing
through the cube can be obtained as flux passing through the
front + back face, top + bottom face, side left + side right. For
the front face

T = To+ d;, ds = dydza, (2.75)
dx 0D,
D e ds = | D,(xo, yo, — dyd 2.76
/ ®as [ (xoyozo)‘i'zax]yz (2.76)
For the back face
r=1x0— d?x, ds = dydz(—ay) (2.77)
dx 0D,

/D ods=— [Dx(:co,yo,zo) S ] dydz (2.78)

Front +back 2D
(‘9; dxdydz (2.79)

similarly for the other faces. So the total flux passing through
the differential volume dv is

oD, 0D, 0D
Deds = =2+ 22 4 22 2.
55 o ds (8:1: + Iy + P )dxdydz (2.80)
) gSDods oD, 0D, 0D,
lim =— = 2.81
w0 do ox * Jy - 0z (281)

which is by definition divD. So the expression for divergence in
Cartesian coordinate system is

0D, N oD, N oD,
ox dy 0z

VeD = < (2.82)
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2.4. REVIEW OF VECTOR ANALYSIS:

In the other two coordinate systems
S 19(pD,) 10D, 0D,
Cylindrical Ve D = | ————2 4 — %4 ~ % 2.83
ylindrica ° (p 99 +p8gb+8z (2.83)
19(r°D,) N 1 O(Dysin®) 1 0D,

r2  or rsinf 00 i rsinf O0¢
(2.84)

Spherical VeD = (

2.4.3.4 PROPERTIES OF DIVERGENCE:
1. Divergence produces a scalar field from a vector field
2. The divergence of a scalar makes no sense
3. Ve(A+B)=VeA+VeRB
4. If Visascalar Ve (VA) =VVeA+ AeVV

2.4.3.5 GEOMETRICAL INTERPRETATION:

V e D is a measure of how much the vector D spreads out (di-
verges) from the point question. The vector function A has a
large positive divergence at the point if large number of arrows
are spreading out.If the arrows point in, it would be a large nega-
tive divergence and on the other hand if the lines are parallel and
uniform then the divergence is zero.
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2.4. REVIEW OF VECTOR ANALYSIS:

OO SO NN N N Y
NONCROOUNO O NN N
OO O OO N N
NN SO NN NN Y
OO SO OO Y Y
OO O N
R R
OO N N N Y
NN OO N N Y A(x.y)=0
OO N N ALY =
NN O NN NN Y
NN RN OO N N N
OO OO NN
OO SO NN NN Y
NN OO N N Y

Figure 2.17: The Divergence is zero

The figure below shows two cases where the divergence is neg-
ative and where the divergence is positive.

A L
. /

V.A(F)<0 V.A(F)>0

Figure 2.18: Negative and positive divergence
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2.4. REVIEW OF VECTOR ANALYSIS:

The figure below shows two cases where the divergence is zero.

V-A(r)=0 V-A(Ff)=0

Figure 2.19: Zero Divergence

The figure below shows a field whose value steadily increases
as we go away from the y - axis.
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2.4. REVIEW OF VECTOR ANALYSIS:

Figure 2.20: Vector field whose value steadily increases as we go away from
Y axis

The vector field in the above figure is given by F' = |z|a, The
divergence of which is 1.
2.4.3.6 THE DIVERGENCE THEOREM:

The divergence theorem states that the total outward flux of a
vector field A through the closed surface S is the same as the
volume integral of the divergence of A. In mathematical form

§1§A ods — / (V o A)do (2.85)

S v
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2.4. REVIEW OF VECTOR ANALYSIS:

2.4.3.7 PROOF OF DIVERGENCE THEOREM:

Consider

5514 ds_ZygA o ds; = Zv

in the limit N — oo, V; — 0, the term in the brackets becomes
the divergence of F' and the sum goes into volume integral result-
ing in

g Aeds dsl (2.86)

%Aods:/(VoA)dv

(2.87)

s \%4

2.4.3.8 CURL OF A VECTOR AND THE STOKE’S THEOREM:

Circulation of a vector A around a closed path L is the integral
¢ Aedl . Curl can be defined as an axial vector whose magnitude
is the maximum circulation of A per unit area as the area tends
to zero and whose direction is the normal to the area, when the
area is oriented so as to make the circulation maximum.

Aedl

Curl A=V x A= ( lim 95—0) an (2.88)
As—0 As max

where the area As is bounded by the curve L and a, is the unit

vector normal to the surface As and is determined using the right

hand rule.
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2.4. REVIEW OF VECTOR ANALYSIS:

Figure 2.21: Derivation of curl

2.4.3.9 EXPRESSION FOR CURL IN CARTESIAN COORDI-
NATES:

Consider a differential area in the y — z plane. Let the sides of the
area element be dy,dz. The closed line integral around the pa

d
%Aodl: /—|—/—|—/—|—/ Aedl, alongab dl = dya,, z:zo—g

ab be cd da

Let the vector field at the center of the closed loop be A(xg, Yo, 20)
then

dz0A
/A o dl = {Ay(xo,yo, 20) — 78—;’] dy (2.89)
ab
similarly
dy 0A,
Aedl = |A(z0,v0, 20) — -2 d 2.90
/ o dl [ (z0, Yo, 20) 5 8y] Y ( )
be
dz0A
/A o dl = [Ay(xo, Yo, Zo) + ?a—z‘y] (—dy) (291)
cd
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2.4. REVIEW OF VECTOR ANALYSIS:

/A o dl = [AZ(ZL‘O, Yo, 20) — %%zz dy (2.92)

da
Let As = dydz then adding all the four integrals we get the
x — component of the curl.

. Aedl 0A, 0A,
fm @ = —larhe =5 -5 (29
similarly
0A, O0A.
(curl), = 52 O (2.94)
0A 0A
), =—4% < 2.
(curl) 5 oy (2.95)
then
_ [(0A, 04, 0A, O0A, 0A, 0A,
Curl A = ( oy 0z > %—i_( 0z ox > ay—l—( ox oy > @z
(2.96)
This can also be written as
a; ay a,
CurlA=| 2 0 20 (2.97)
dr Oy Oz
A, A, A,

2.4.3.10 STOKE’S THEOREM:

Stoke’s theorem states that the circulation of a vector field A
around a closed path L is equal to the surface integral of the
curl of A over the open surface S bounded by L provided that A
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2.4. REVIEW OF VECTOR ANALYSIS:

and V x A are continuous on S .in mathematical terms it can be

written as
y{A.dZ://(vXA).ds (2.98)

c

2.4.3.11 PROOF OF STOKE’S THEOREM:

Consider

%A odl = Z%A o dl; _stt@’zszdl) (2.99)

Observe what happens to the right hand side as N is made
enormous and ds; shrink. The quantity in the parentheses be-
comes (V x A) e a; where a; is the unit vector normal to the i th
patch.. So we have on the right the sum, over all the patches that
make up the entire surface S spanning C', of the product "patch
area times normal component of (Curl of A)". This is nothing but
the surface integral over S , of the vector curl A

stz (95 fzszdl> ZN:dsi(VXA)oai/(VxA)ods

S

(2.100)

$ Aedl = [(VxA)eds

It relates the line integral of a vector to the surface integral of
the curl of the vector.
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2.4. REVIEW OF VECTOR ANALYSIS:

2.4.3.12 PROPERTIES OF CURL:

1. The curl of a vector field is another vector field

[\

. VXx(A+B)=VxA+VxB
. Vx(AxB)=A(VeB)—B(VeA)+(BeV)A—(AeV)B

3
4. The divergence of the curl of a vector field is zero

[

. The curl of the gradient of a scalar is zero

(2.101)

2.4.3.13 CLASSIFICATION OF VECTOR FIELDS:

All fields can be classified in terms of their vanishing or non-
vanishing divergence or curl.

VeA=0, VxA=0 VeA#0, VXxA=0
VeA=0, VxA#0 VeA#0, VXA#OQ

Below are the examples of the fields
1. A=ka,, Ve A=0,V x A=0. Solenoidal and irrational

2.A=kr,VeA =3kV xA = 0. Non-solenoidal and
irrational.

3. A=kxr, VeA =0,V xA = 2k . Solenoidal and rotational.
4. A=kxr+c VeA=3cV x A=2k . Non-solenoidal

and rotational.
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2.4. REVIEW OF VECTOR ANALYSIS:

A vector field A is said to be solenoidal ( divergence less) if Ve A =
0 . Such a field has neither a source nor a sink of flux.
A vector field is said to be irrational if V x A =0

/:\

Rl il Sl i, el . e i il i

Figure 2.22:

2.4.3.14 HELMHOLTZ’S THEOREM:

To what extent is a vector function determined by its divergence
and curl? Suppose we are told that the divergence of F'is a spec-
ified scalar function D

Vel'=D (2.102)
and the curl of I is a specified function C'
VxF=C (2.103)
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2.4. REVIEW OF VECTOR ANALYSIS:

( for consistency, C' must be divergence less V o C' = 0 because
the divergence of a curl is always zero). On the basis of this
information, can the function F' be found? If this information is
not sufficient, there may be more than one solution to the problem;
if there is too much of information, there may not be any solution.
Helmholtz’s theorem provides the answer to this:
HELMHOLTZ’S THEOREM: If the divergence D(r)
and the curl C(r) of a vector function F(r) are specified,
and if they both go to zero faster than %2 as r — oo and if

F(r) goes to zero as r — oo, then F' is given uniquely by
F=-VU+VxW (2.104)

where U is a scalar field and W is a vector field.

Corollary: Any vector function F(r), which goes to zero faster
than % as r — oo , can be expressed as the gradient of a scalar
plus the curl of a vector:

F:V(—i/V°FdT>+V>< (i/VXFdT> (2.105)
4 r 4 r

2.4.3.15 VECTOR IDENTITIES:
1.VU+V)=VU+VV
2. V(UV)=UVV +VVU

3 v (%) _ V(VU)VTQU(VV)

4. VV" = nV"IVV (n = integer)
5. V(AeB)=(AeV)B+(BeV)A+Ax(VxB)+Bx(VxA)
6. Ve(A+B)=VeA+VeRB
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2.4. REVIEW OF VECTOR ANALYSIS:

7.
8.
9.
10.
11.
12.
13.
14.
15.

16

17.

18
19
20

Ve(AxB)=DBe(VxA) —Ae(V xDB)

Vx (VA =VV xA+V(V xA)
Vx(VV)=0

VX (VxA)=V(VeA) —V?A
$, Aedl=[(V x A)eds
$,Vdl = — [V x ds

¢ Aeds= [ (VeA)dv

$ Vs = [ VVdy

¢ Axds=— [V xAdv
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2.4. REVIEW OF VECTOR ANALYSIS:

Tutorial and Homework problems

1. What is the physical definition of the gradient of scalar fields?

2. Express the space rate of change of a scalar in a given direc-
tion in terms of its gradient.

3. What is the physical definition of the divergence of a vector
field?

4. What is the physical definition of the curl of a vector field?

5. What is the difference between an irrotational field and a
solenoidal field?

6. Given a vector field ' = ya, + xa, , evaluate the integral
[ Fedl from P(2,1,—1) to P»(8,2,—1)
(a) along the straight line joining the two points, and

(b) along the parabola x = 2y* . Is this F a conservative
field.

7. Given a vector field F' = xya, + yza, + zza,

(a) Compute the total outward flux from the surface of a unit
cube in the first octant with one corner at the origin.

(b) Find V e F and verify the divergence theorem.

8. Obtain V(%) , considering the point (zs, ys, 25) in the figure
below as fixed while the point (z,y, z) as variable.

Dr.K.Parvatisam 65
GVP College of Engineering ( Autonomous )



2.4. REVIEW OF VECTOR ANALYSIS:

b (oye2)

R
(2, y,2)

9. Obtain Vi (%) for the previous example.
10. Assume that a vector field is given by A = (22% + y?)a, +
(zy — y*)ay

(a) Find ¢ A e dl arround the triangular contour shown in
the figure below
(b) Find ¢ (V x A) e ds over the triangular area .

(c) Can A be expressed as the gradient of a scalar 7 Explain.

Dr.K.Parvatisam 66
GVP College of Engineering ( Autonomous )



Unit-1

Electrostatics:

Electrostatic Fields — Coulomb’s Law — Electric Field Intensity
(EFI) — EFI due to a line and a surface charge — Work done in
moving a point charge in an electrostatic field — Electric Potential
— Properties of potential function — Potential gradient — Gauss’s
law, Application of Gauss’s Law — Maxwell’s first law, Ve D = p,



Chapter 3

STATIC ELECTRIC FIELDS

Learning Outcomes

e Define electric charge, and describe how the two types of
charge interact.

e Describe three common situations that generate static elec-
tricity.

e State the law of conservation of charge.

e State Coulomb’s law in terms of how the electrostatic force
changes with the distance between two objects.

e Calculate the electrostatic force between two point charges.

e Compare the electrostatic force to the gravitational force

Electrostatics is the study of the effects of electric charges at
rest, and the electric fields do not change with time. Although
this is the simplest situation in electromagnetics, its mastery is
fundamental to the understanding of more complicated electro-
magnetic models. The explanation of many natural phenomena (
such as lightning and corona ) and principles of some important
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industrial applications ( such as oscilloscopes,ink-jet printers, xe-
rography, capacitance key board and liquid crystal displays). are
based on electrostatics.

What makes plastic wrap cling? Static electricity. Not only are
applications of static electricity common these days, its existence
has been known since ancient times. The first record of its effects
dates to ancient Greeks who noted more than 500 years B.C. that
polishing amber temporarily enabled it to attract bits of straw.
The very word electric derives from the Greek word for amber
(electron). Many of the characteristics of static electricity can be
explored by rubbing things together. Rubbing creates the spark
you get from walking across a wool carpet, for example. Static
cling generated in a clothes dryer and the attraction of straw to
recently polished amber also result from rubbing. Similarly, light-
ning results from air movements under certain weather conditions.
You can also rub a balloon on your hair, and the static electricity
created can then make the balloon cling to a wall. We also have to
be cautious of static electricity, especially in dry climates. When
we pump gasoline, we are warned to discharge ourselves (after
sliding across the seat) on a metal surface before grabbing the gas
nozzle. Attendants in hospital operating rooms must wear booties
with aluminum foil on the bottoms to avoid creating sparks which
may ignite the oxygen being used. Some of the most basic char-
acteristics of static electricity include:

e The effects of static electricity are explained by a physical
quantity not previously introduced, called electric charge.

e There are only two types of charge, one called positive and
the other called negative.

e Like charges repel, whereas unlike charges attract.
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e The force between charges decreases with increasing distance.

How do we know there are two types of electric charge? When
various materials are rubbed together in controlled ways, certain
combinations of materials always produce one type of charge on
one material and the opposite type on the other. By conven-
tion, we call one type of charge “positive”, and the other type
“negative.” For example, when glass is rubbed with silk, the glass
becomes positively charged and the silk negatively charged. Since
the glass and silk have opposite charges, they attract one another
like clothes that have rubbed together in a dryer. Two glass rods
rubbed with silk in this manner will repel one another, since each
rod has positive charge on it. Similarly, two silk cloths so rubbed
will repel, since both cloths have negative charge.

With the exception of exotic, short-lived particles, all charge in na-
ture is carried by electrons and protons. Electrons carry the charge

we have named negative. Protons carry an equal-magnitude
charge that we call positive. Electron and proton charges are con-
sidered fundamental building blocks, since all other charges are
integral multiples of those carried by electrons and protons. Elec-
trons and protons are also two of the three fundamental building
blocks of ordinary matter. The neutron is the third and has zero
total charge.

Charge has two important properties

1. Charge is quantized

2. Charge is conserved

Quantization of charge means charge is available in nature as in-

1

tegral multiples of the charge of an electron. We can not have 3
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charge of an electron or 0.75 times the charge of an electron.
Charge is conserved. It can not be created or destriyed. The
total charge of the universe is fixed for all the time.

Only a limited number of physical quantities are universally con-
served. Charge is one—energy, momentum, and angular momen-
tum are others. Because they are conserved, these physical quan-
tities are used to explain more phenomena and form more con-
nections than other, less basic quantities. We find that conserved

quantities give us great insight into the rules followed by nature
and hints to the organization of nature. Discoveries of conserva-
tion laws have led to further discoveries, such as the weak nuclear
force and the quark substructure of protons and other particles.
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3.1. COULOMB’S LAW

3.1 COULOMB’S LAW

Charles-Augustin de Coulomb: (born
June 14, 1736, Angouléme, France—died
August 23, 1806, Paris), French physicist
best known for the formulation of Coulomb’s
law.

Coulomb spent nine years in the West Indies
as a malitary engineer and returned to France
with impaired health. Upon the outbreak of the French Revolution,
he retired to a small estate at Blois and devoted himself to sci-
entific research. In 1802 he was appointed an inspector of public
instruction.  Coulomb developed his law as an outgrowth of his
attempt to investigate the law of electrical repulsions as stated by
Joseph Priestley of England. To this end he invented sensitive
apparatus to measure the electrical forces involved in Priestley’s
law and published his findings in 1785-89. He also established
the inverse square law of attraction and repulsion of unlike and
like magnetic poles, which became the basis for the mathemati-
cal theory of magnetic forces developed by Siméon-Denis Poisson.
He also did research on friction of machinery, on windmills, and
on the elasticity of metal and silk fibres. The coulomb, a unit of]
electric charge, was named i his honour.

3.1.1 FORCE BETWEEN POINT CHARGES:

3.1.1.1 Elecric charge:

The concept of electric charge is fundamental to all electromag-
netic phenomena, including electronics, optics, friction, chemistry,
etc., but we have noidea what it is! We know what it does , and
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3.1. COULOMB’S LAW

how big it is, but the fundamental nature of charge is unknown.
We have to simply accept that charge exists and that some funda-
mental particles ,electrons and positrons, have it and others like
neutrons , do not.

What we know is that there are two types of charge that we
call positive and negative. these are of course arbitrarily chosen
names and without any deep significance. We know that electron
possesses negative charge and we call the value of the charge as
elementary charge. All electrons have the same amount of charge
. No exceptions!

The value of the elementary charge is

e = 1.602176462 £ 0.000000063.10*C (3.1)

where the uncetanity is the standard deviation.

Unats:

ments.

The SI unit for electrical charge is Coulomb, for which we use the
symbol C. The magnitude of C is based on magnetic measure-

One way to illustrate the mysterious ways of charge is to con-
sider the charge of the electron . We know that the radius of the
electron must be less than 107 17cm . We can calculate the charge
density of the electron as

e C
pe = 1= > 10— (3.2)

2.3 3
37'6 cm

This is an enormous number that we can not begin to create
in any macroscopic object.
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3.1. COULOMB’S LAW

Coulomb’s law is formulated in 1785.1t deals with the force a
point charge exerts on another point charge. By a point charge
we mean a charge that is located on a body whose dimensions are
much smaller than other relevant dimensions.

The force between two point charges )1 and s is

1. Along the line joining them

2. Directly proportional to the product of the magnitudes of the
charges (01 and ()5 .

3. Inversely proportional to the square of the the distance 'R’ ,
between the charges

4. Like charges repel and unlike charges attract.

Expressed in mathematical form

Q1Q2
R2

F=k (3.3)

’k’ is the proportionality constant
(21 and ()9 are point charges and in Coulombs
'R’ is the distance in meters

F is the force in Newtons
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3.1. COULOMB’S LAW

In SI system of units k = ﬁ where €y is the permittivity or di-

electric constant of the free space.

1 -9
€= 8.854 x 10712 ~ 10

~ 3.4
36 X ( )

3.1.2 COULOMB’S LAW IN VECTOR FORM:

()1 and )y are located at points 1’ an "2’ having position vectors
r1 and ro, then the vector force Fy on (o due to ()7 is given by

See Fig3.1.
where
R12:T2—T1 (36)
and
Rio
p— 3-7

1s the unit vector in the direction of the force.

F12:_F21
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3.1. COULOMB’S LAW

L

Figure 3.1: Force between two point charges
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3.1. COULOMB’S LAW

In formulating this law no hypothesis is made concerning the
mechanism by which the force is transmitted over the intervening
distance in the vacuum. FEither the force is transmitted instanta-
neously, ie., with infinite speed, or it may be postulated that the
speed of transmission of the force is finite , but that all transient
effects have disappeared leaving the steady state condition, the one
of interest. Either way the situation being considered is a static
one.

A comparison of the relative magnitudes of the electrical and grav-
itational forces between two electrons shows how large are the elec-
trical forces compared to gravitational forces . An electron has
the smallest quantum of charge and also the smallest known fi-
nite mass : 1.6 x 10719C and 9.1 x 1073 kg . For two electrons
separated by a distance of Im

1 qsq o(1.6 x 10719)2 o9
Fooe =— =9 x 10 =23 x107*N
" “Areq R2 8 (10-3)2 .
A mama 1 (9.1 x 107312 B .
Fg’rav —GF = 06.67 x 1— (10_3>2 = 5.5 x 10 N

For electrons the electrical force is almost 10* as strong as the
gravitational force. For other charged particels also it is not dif-
ferent. As a consequence,it is unnecessary to consider the gravi-

tational force when electrical forces are present.

The Coulomb expression yields an infinite force when two point
charges ( Finite charge, infinitesimal size, infinite charge density)
are separated by an infinitesimal distance. But when one of the
charges is itself an infinitesimal, pd7s then the force it produces
on a point test charge located there ( at the same point ) is finite.
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3.1. COULOMB’S LAW

3.1.3 PRINCIPLE OF SUPERPOSITION:

If there are more than two point charges the principle of super
position can be applied to determine the force on a particular
charge because of all the reaming charges. The principle states
that if there are "N’ charges Qq,Qs,@3...Qny located respec-
tively at points whose position vectors are ri,r9,73...75 , the
resultant force Fon charge () located at a point whose position
vector is r is the vector sum of the forces exerted on () by charges

Q17Q27Q37-- QN 1S
p_oQ@Q r-rn Q@ r—m  QQv r—ry a9)

 dme ]7“—7“1|3 4re |7"—7°2|3 O dme ]r—TN]?’

The above can also be expressed as a summation

Q <, (r—m)
F=—""Q—= 3.10
47T€() ; ‘7"' . frk‘g ( )
If Q1 = @2 = 1C and Ri» = 1m the force acting between these
charges is = 9 x 10° N. .An enormous force. The
electrical
forces

huge

Example:
As an example consider a charge of 3x 1074C at P(1,2,3) and
a charge of —1074C at (2,0, 5) in vacuum. Find the force acting

on charge at () .
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3.1. COULOMB’S LAW

Ans:
Q1 =3x10"%and Qy = —10~*

Rig=ry—ri1=2—-1a, + (0—2)a, + (5 — 3)a
= a; — 2ay + 2a;

a; — 2a, + 2a,
3
3 x 1074107 (am — 2a, + 2az>
B =

47 (—Séﬂ) 109 3
T 2 2 z
F2:—30(a C;y+a)N

(3.11)

(3.12)

Example:

Point charges 1mC and —2mC' are located at (3,2, —1) and
(—1,—1,4) respectively. Calculate the electrical force on a 10nC

charge located at (0,3,1) .
Ans:

P i@@k =T
h=1

— 47'['60 |r — rk’?)
(_37 72)

2(1,4, —3)

1
F = 10x107?x9x10° x 1073
. . . * <[(07371)_( 727

~3,1,2)  (-2,-8, 6))
+

F = 9x1072 (
( 1414 26+/26
F = —6.507a, — 3.817a, + 7.506a,mN

—1)

[(07 37 1) T (_17
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3.1. COULOMB’S LAW

Example:
2mC' charge (positive) is located at P;(3,—2,—4) and a 5uC
charge (negative) is at P»(1, —4,2)

1. Find the vector force on the negative charge
2. Also find the magnitude of the force
Ans:

Ry = [(1,-4,2) — (3,—2,—4)] = —2a, — 2a, + 6a.

—2a., — 2a, + 6a
Ri| = V44 ,ap, = 2o~ 2y 700
| R1s]| R N7,

Fls = (2x107%)(=5x 107% x 9 x 10° (

Fiy, = 0.613a, +0.613a, — 1.84a, N
|Fo] = /(0.613)% + (0.613)2 4 (1.84)2 = 2.034 N

—2a, — 2a, + 6a2>
44+/44

Example:

It is required to hold four equal point charges ¢ C' each in
equilibrium at the corners of a square of side a meters. Prove
that the point charge which can do this is a negative charge of
magnitude

@q (3.13)

coulombs placed at the center of the square.
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3.2. ELECTRIC FIELD

3.2 ELECTRIC FIELD

Consider one charge fixed in position, say ()1 with position vector
Ry and move a second charge slowly around, it can be seen that
there exists everywhere a force on the second charge. In other
words, the second charge is displaying the existence of a force
field. If the test charge is denoted by @); , the force on it is given
by Coulomb’s law as

f— @

— 3.14
47eg R%t @R ( )

Writing this force as a force per unit charge gives

F Q1

v 3.15
Q: 4meoRE, @R ( )

The force is only a function of ()1 and is a directed segment from
()1 to the position of the test charge. This is a vector field and is
called the Electric Field intensity.

Electric field intensity can be defined as vector force on a unit
positive test charge. The units are Newton/Coulomb. Anticipat-
ing a new quantity Volt which will be defined later, the unit for
electric field intensity is normally given by Volt/meter.

The test charge should be small such that it will not disturb
the original field of the charge distribution under consideration.
So the electric field intensity denoted by E is defined as

lim — (3.16)
Electrical field of a point charge

Let the point charge be located at some point in a spherical co-
ordinate system at a distancer from the origin of the co-ordinate
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3.2. ELECTRIC FIELD

system. 'E’ can be expressed as

Q

E = . 3.17
47Teor2a ( )

In Cartesian co-ordinates r = za, + ya, + za, and
= Tay, + ya, + za, (3.18)

Va2t 22
The field is spherically symmetric. If the charge is not at the
origin, the field will not be spherically symmetric. If the source
charge is at v’ = 2'a, + y'a, + Z'a., the field at a general point
r = xa, + ya, + za, is given by

[ ror (3.19)

B Ay |r — /| |r — 7]

3.2.1 ELECTRIC FIELD BECAUSE OF CHARGE DISTRI-
BUTIONS:

Charge distributions can be of three types
1. Line charge distribution C/m
2. Surface charge distribution C/m?

3. Volume charge distribution C/m? The total charge in a given
configuration can be obtained as

dQ = prdl and Q = /pLdl (3.20)
dQ = psds and Q = /psds (3.21)
Dr.K.Parvatisam 82

GVP College of Engineering ( Autonomous )



(3.22)

3.2. ELECTRIC FIELD
dQ = pydv and Q) = /pudv

The electric fields because of the distributions are given by
(3.23)

prdl
B [ P2
/47TEOR2aR

E

/ psds
47TEOR2aR
Poudv
E p—
/ a2t

Point charge
{a)

Line charge
(b)

dg = o dS

Volume charge
{d)

Surface charge

fc)
Figure 3.2: Charge Distributions
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3.2. ELECTRIC FIELD

3.2.2 FIELD BECAUSE OF A FINITE LINE CHARGE:

Consider a line of finite length with uniform charge density py,
C/m extending from A to b along the Z — axis as shown in the
figure. The charge in the element dl = dz is d() and is given by
prdz. The total charge is given by

Q= /ZB prdz (3.24)

The source point is (z,y, z), the field point is (', 1/, 2’), so dl =
dz'

R = za,+ya, + (z — 2)a, (3.25)

R = pa,+ (z — )a, (3.26)
R = PP+ (2 =) (3.27)
on _ lpay+ (e .
RY [ (2 - 2 e
Then (3.29)
g o— P [lpa,+ (2~ Z’)ag] 3.0
ol preomi O

Define a, ay and oy as shown in the figure.
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3.2. ELECTRIC FIELD

(0,0,2")

Figure 3.3: Line charge distribution

R=[p+ (z— %)% = pseca (3.31)
¢ =0l — ptana, dz' = —psec’ a da (3.32)
o _ P /0‘2 psec” [cos aa, + sin aa,] do (3.33)

dme J o, p?sec? a

b =2
=L =) 3.34
cosa = 5,sina 7 (3.34)
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3.2. ELECTRIC FIELD

o / [cos aa, + sin aa,] da (3.35)

dmey Ja,

E —
41eg

[(sinoy —sinag)a, + (cosas — cosay)a,]  (3.36)

3.2.3 CASE [: INFINITE LINE CHARGE:

For an infinite line charge point B will be at (0,0, 00) and point
A will be at (0,0, —00). so that oy = 5,0 = —F. Substitution
of the above values gives

PL
E = 3.37
27T€()pap ( )

The z-component vanishes.

3.2.4 CASEIL:LOWER END COINCIDING WITH THE FIELD

POINT:
a; =0, ay = tan™! %
E=- 7';’ ELOp [(cos ag — 1)a. + sin aza,) (3.38)
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3.2. ELECTRIC FIELD

B

(o, 4

P
Caselll: Upper end coinciding with the field point:
ap = tan™! %, as =0
E=-"r Isinawa, + (1 — cosa)a,] (3.39)
Amegp P
B p
(2
L
A
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3.2. ELECTRIC FIELD

3.2.5 CASE IV: SEMI- INFINITE LINE:

Lower end goes to infinity-field point coinciding with the upper
end:
a1 = 900, g — 0

la, + a] (3.40)

B o

\/
o0

3.2.6 CASE V:SEMI- INFINITE LINE:

Upper end goes to infinity. Field point coincides with the lower
end.
a1 = O, Q9o = —900

PL
E —
dmegp

la, — a.] (3.41)
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3.2. ELECTRIC FIELD

0.@)

Py

A .

3.2.7 CASE VI: SEMI INFINITE LINE:

General point. Line extending from 0 to oo .
] = 1, Qg = —900

PL

E —
Amegp

[(sinoy — 1)a, — cos aqa.] (3.42)
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3.2. ELECTRIC FIELD

©.@)

B,

()

3.2.8 CASE VIL:SEMI-INFINITE LINE:

General point. Line extending from 0, —oo
a1 = 900, oy — (9

PL

E —
4dmenp

[(1+sinag)a, + cos asa)

of
90( Field Point

(3.43)
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3.2. ELECTRIC FIELD

B 0

Field Point

o0

Ay

O

3.2.9 CIRCULAR RING OF CHARGE:

To find the field at any point on the axis of a circular ring of
charge, whose axis coincides with the z axis. The charge density is
pr.C/m. The radius of the ring is @ m Consider a small differential
length dl = ad¢ on the ring. Consider a point (0,0,h) . Th
distance between the charge element and the point on the z axis
is
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3.2. ELECTRIC FIELD

——

dL'=a d'(‘b’

Figure 3.4: Ring of charge

R = —aa, + ha, (3.44)
The total charge in the differential length element is dQ) = prade
R| = (a® + h?)> (3.45)
R — ha,
an = oy = (346
BP (@ + 1)
2
_ ha.
Jop / (zaa, +haz) s (3.47)
dmey Jy—o (a® + h?)2
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3.2. ELECTRIC FIELD

The above is a sum of two integrals and the first one over 0to 27
is equal to zero as a, = cos ¢a, — sin ¢a, So the resulting integral
18

h o h
_ Pr ¢ 3az/ do = PL ¢ -a, X 21 (3.48)
Ame (a2 + h2)2 " Jo Amep (a2 + h?)2

The result is
prah

E = =,
260(@2 + h2)5

(3.49)

Maximum value of E:
To find the maximum value of E equate % to zero. This gives
h = i\% As a — 0 the ring behaves like a point charge. If the

total charge on the ring is () then p; = % Then

h
po__ @ (3.50)
Ameg[h? + a?]2
asa— 0
E = © a. (3.51)
Amegh?

Same as the field of a point charge.

3.2.10 SURFACE CHARGE DISTRIBUTION:

Assume a disk of radius’a’ m with a surface charge density p,C/m?. Assume
that the axis coincides with the z — axis. It Is required to find

the field at any point (0,0, h) on the axis of the disk. Consider a

small surface area element
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3.2. ELECTRIC FIELD

8

£=(0.0, %) 1

=

F
Figure 3.5: Disk of charge
ds = pdpd¢ (3.52)
. The charge in that small differential area element is given by
dQ) = psds = pspdpdd (3.53)
.The field because of this charge is given by
dQ
de = ——— 3.54
‘ deg R? = (3:54)
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where

R = —pa, + ha, (3.55)

and
R —pa,+ ha,

agp = = 3.56
B EiR (3.56)
Th e field because of the complete disk is
a 27
spdpdd {— ha,
0 0 47T€0 [p2 + h2]§

The first term containing the unit vector a, is zero integrated over
0 to2m. The second term that remains is

/ / " _hodpds. % _, (3.58)
47T60 2 4 h2 '

Integration by substitution of variable

p = htand (3.59)

results in

oty L, (3.60)
2¢€p [h2 + a?]?

As a — oo the charge configuration tends to an infinite sheet of
charge and the field is equal to

E=1"a, 3.61
260@ (3.61)

that is, F has only z— component if the charge is in the x — y
plane. In general, for an infinite sheet of charge

E=2gq,

26(]
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3.3. ENERGY AND POTENTIAL

where a,, 1s a unit vector normal to the sheet. From the above
equation it can be noticed that the electric field is normal to the
sheet and is independent of the distance between the sheet and
the point of observation P .

In a parallel plate capacitor, the electric field existing between
two plates having equal and opposite charges is given by

Ps —Ps Ps
2€0a + 260 ( ¢ ) E()a ( )

3.3 ENERGY AND POTENTIAL

3.3.1 ENERGY EXPENDED IN MOVING A POINT
CHARGE IN AN ELECTRIC FIELD:

Suppose we wish to move a charge () a distance dL in an electric
field E. The force on () due to the electric field is

F=QF I

where the subscript indicates that the force is due to the electric
field. The component of this force in the direction of dL which an

external force has to overcome is
Fpp=Fear=QFeay (3.63)

where ay 1s a unit vector in the direction of dL The external force
that must be applied is equal and opposite to the above force

Fappl = —QE ey (364)
or

AW = —QE e dL (3.65)
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3.3. ENERGY AND POTENTIAL

The work done in moving a charge () a finite distance is deter-
mined by integrating

final
W =-Q EedL (3.66)
initial
where the path must be specified before the integration is per-
formed.Th e charge is assumed to be at rest at both its initial and
final positions.

Example: Given the electric field £ = Z% (8:L’yzax + 4a*za, — 4x2ya2) V/m.
Find the differential amount of work done in moving a 6 — nC'
charge a distance 2um, starting at P(2, —2,3) and proceeding in
6 6 3 2 3

ect . 3. 12 o
the direction ay =: i) —za,+32a,+2a.;ii)za, —2a,—2a.; 111) 50, +
Sa,.

7
3.3.2 The LINE INTEGRAL:

The integral expression for the work done in moving a point charge
() from one position to another, equation: is an example of a line
integral. The procedure for evaluating the integral is shown in fig:
, where a path has been chosen from an initial point B to a final
point A and uniform electric field is selected for simplicity.

The path is divided into six segments , ALy, ALy ... ALg

, and the components of F along each segment is denoted by
Er,Ers... Erg

The involved in moving a charge ) from B to A is

w = —Q [EL1AL1 + EpoALy + ... ELGAL(;] (367)
or using vector notation

w = — [ELlQALl—l—ELQOALQ—f—...ELGOALG] (368)
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3.3. ENERGY AND POTENTIAL

as the field is uniform F; = Ey = ... Eg

w=—QF AL + ALy + ...+ AL (3.69)

The sum of all these small vector length segments is equal to
the vector directed from the initial point B to the final point A,
and is denoted by L4 . Therefore

W =—-QEeLgy (3.70)

This result for a uniform field can be written as an integral

A
W=-Q [ Eedl (3.71)
/

Now we can define potential difference V' as the work done (by a n
external agency) in moving a unit positive charge from one point
to another in an electric field

final

W
Veg=- / Eedl (3.72)

Vap signifies the potential difference between points A and B

initial

and is the work done in moving the unit positive charge from B
(last named) to A (the first named). In determining Vyp , B is
the initial point and A is the final point. Potential difference is
measured in Joules /Coulomb, which is commonly called as Volt.
hence

Vig=— | Eedd V

A
/
(3.73)
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3.3. ENERGY AND POTENTIAL

and V4 p is positive if work is done in carrying a positive charge
from B to A .

3.3.2.1 THE POTENTIAL FIELD OF A POINT CHARGE:

To find the potential difference between points A and B at radial
distances r4 and rp from a point charge (), assume that the origin
is at () then

Q
E=F.a =——a, 3.74
“ 47reo7“2a (3:74)
and
dL = dra, (3.75)
we have
A rBp 1
1
VAB:—/EOdL:— idT’: Q _—— — :VA—VB
Amegr? Admeg \ 74 TR
B A

(3.76)

If r4 > rp, the potential difference V4p is positive indicating

that energy is expended by external agent in bringing the positive
charge from rp to r4 . See figure below

A(ry, 04, ¢4)

/__— dL=dra, +rddag+rsinbdp a,

B(rg. UB- ®g)

Figure 3.6: Potential in the field of a point charge
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3.3. ENERGY AND POTENTIAL

To speak of the potential or absolute potential, of a point,
rather than the potential difference, an agreement must be reached
to measure the potential with respect to a specified reference point
which should be considered to have zero potential. The most uni-
versal zero reference point is “ground”. Theoretically it is rep-
resented by an infinite plane at zero potential. Another widely
used reference point is infinity. This usually appears in theoret-
ical problems. Also it is necessarily agreed that V4 and Vpshall
have the same zero reference point.

From the above figure it can also be seen that the potential
difference does not depend on path of integration, but depends
only on the distance of each point from the charge( that is, only
on the end points).

3.3.2.2 POTENTIAL FIELD BECAUSE OF A GROUP OF CHARGES:

The potential at a point has been defined as the work done in
bringing a unit positive charge from the zero reference to the
point. Thus the potential of a single point charge ()1 located at
r1 at a point distant r from the origin with zero reference at
infinity

Q1

- 477'60‘7“—7“1‘

V(r) (3.77)

The potential due to n charges is at this point is given by
1 (2 Qn

~ dre I — 7] i Ameq |1 — 19 Ameq |1 — 1y
(3.78)

Vi(r)
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3.3. ENERGY AND POTENTIAL

Vir)=>_ O

m=1

Aeg |1 — T
(3.79)

If each point charge is now represented as a small element of a
continuous volume charge distribution p,/Av, then

_ Pv(rl)dvl
V(r) = /—4760 p— (3.80)
vol

For line charge and also for surface charge distribution the respec-
tive expressions are

Vi) = / pr(r)dL’

drreg |r — 1’|

pq,(r/)dsl
Vir) = [ )%
(r) / Areg |r — 1’|

S

3.3.2.3 THE POTENTIAL FIELD OF A RING OF UNIFORM
LINE CHARGE DENSITY:

To find V' on the axis of a uniform line charge py in the form a
ring of radius a , in the z = 0 plane as shown in figure.
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3.3. ENERGY AND POTENTIAL

——=

dL'=a .:'J'(‘b’

Figure 3.7: Ring of charge

we have
dL = add , r = za,, r = aa,, |r— r=va?+ 22 (3.81)
and
2 J ,
vz/ pradp  _ _ pra (3.82)
dregva? + 22 2epva? + 22

so potential at any point on the axis of a uniformly charged ring
18

V = pLa
2e0Va%+2z2
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3.3.2.4 POTENTIAL AT ANY POINT ON THE AXIS OF UNI-
FORMLY CHARGED DISC:

dqg = ps2mrdr
dq
av =
dmeg R
R = 12+ h?
- ps2mrdr
4dmegV/ 1% + h?
Vo Ps / rdr
2¢0 ) 12+ h?
V = Z'O—;h(seca— 1)+ C
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3.3. ENERGY AND POTENTIAL

fC=0atz=0

V=L (seca — 1) (3.83)
260

Example:

A charge of () C is distributed homogeneously over the surface
of a sphere of radius R meters. The sphere is in vacuum . Find
the potential Vas a function of distance r from the center of the
sphere for 0 <r < oo . V(o0) = 0.

Answer:

Outside the sphere

V = —/Eodr r>R
s 0 /@: Q
Amey | 12 Admegr
Inside the sphere:
r ] r Q R ] Q
Vir)=— [ Fedr = — —dr — [ (0)dr | = — <R
() / oar 47eg /7’2 " /( Jr dmeg R (r )
(3.84)
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3.3.2.5 POTENTIAL AND ELECTRIC FIELD OF A DIPOLE:

An electric dipole is formed by two point charges of equal magni-
tude and opposite sign (+@Q, —@Q) separated by a short distance
d. The potential at the point P due to the electric dipole is found
using superposition.

Dr.K.Parvatisam 105
GVP College of Engineering ( Autonomous )



3.3. ENERGY AND POTENTIAL

ﬁ% R AP
+0¢—— "
M //
42 ,}/
0 V=V, +V.

0 ., 0

=4“59R+ 4ne R
0|1 _1

" 4me,|R, R

+

Figure 3.8: Dipole

If the field point P is moved a large distance from the electric
dipole (in what is called the far field, > d the lines connecting
the two charges and the coordinate origin with the field point
become nearly parallel.
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3.3. ENERGY AND POTENTIAL

— =
d =
—cosh =~
2 )
£ 10 e Ch
R e
' s P _
d/? ,../}f" R, %r-—cosO
D 2
e R_=r+—=cosb
| R ,,//
| R
e &
0y
-0z
14_1:059
Figure 3.9: Far field approximation
1 1
Vo = E d - d
dmey |r — Gcos r+ Gcosd
V o~ Q _(7"—|— gcose) —(r— gcose)
A1e ] (7"2 — dzz cos? 0)
as r > d the far field is
QQd cos 6
V=" 3.85
Aegr? (3:89)

The electric field produced by the electric dipole is found by
taking the gradient of the potential.
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3.3. ENERGY AND POTENTIAL

ov 10V
V = —VE = — {Ear + ;%agl
o Qd ] 0 (1 10
= e, _cos 987’ (72) a, + 590 (cos 9)@4
o Qd ] 2 1 :
= e -COS(9 < 7“3> a, + r3( sin 9)@9]
Qd

= 13 [2 cos fa, + (sin 0)ag)
0

If the vector dipole moment is defined as

P = pa, = Qda, (3.86)

where a, points from +¢) to —(). The dipole potential and electric
field may be written as

v Qdcost  Pea,
 Amegr?  dmegr?
E P 19cos0a, + sin fay)
= cosfa, + sin fa
4Aegr Hmva

Note that the potential and electric field of the electric dipole
decay faster than those of a point charge. For an arbitrarily lo-
cated, arbitrarily oriented dipole, the potential can be written as
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# r-r )

fﬂp A V= |r_r/|)

ij:i; P 4ne |r-r|
Qe

> " __p(r-7)

4me |r-r]

J:'

(|r-7|>d)

X

Figure 3.10: Arbitrarily placed dipole

3.3.3 ENERGY STORED IN AN ELECTROSTATIC
FIELD:

The amount of work necessary to assemble a group of point charges
equals the total energy (W,) stored in the resulting electric field.

Example (3 point charges): Given a system of 3 point charges,
we can determine the total energy stored in the electric field of
these point charges by determining the work performed to assem-
ble the charge distribution. We first define V,,,, as the absolute
potential at P, due to point charge @),,.
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P] ‘4“_.H.J__a s O ",
e e i _ "x\_\h
Pk Y
f,f”-. T H‘ Q’
L Y,
/f ;
y y
)
P,
X

Figure 3.11: Energy to move point charges

1. Bring Q; to Pi(no energy required).
2. Bring Q2 to Py (work = Q3Va).
3. Bring Q3 to P3 (work = Q3V31 + Q3V32)

The total work done W, = 0 + QQ2Vo1 + Q3V31 + Q3V30
If we reverse the order in which the charges are assembled, the
total energy required is the same as before.

1. Bring Q3 to Ps (No energy required)
2. Bring Q3 to Py (work=Q2V53)
3. Bring Qito Py ( work done = @Q1Vis + Q1Vi3)
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3.3. ENERGY AND POTENTIAL

Total work done W, = 0 + Q2Va3 + Q1 V1o + Q1Vi3
Adding the above two equations

2We = Q1Via + Q1Viz + Q2 Va1 + Q2Vaz + Q3Va1 + Q3Vsy (3.87)

W = 5 [(@u(Via + Vis) + Qa(Var + Vas) + @s(Vir + Vio)] = 5 [QuVi + QoVa + Qo
(3.88)
where V;,, is the total absolute potential at P, affecting Q),,.
In general, for a system of N point charges, the total energy in
the electric field is given by

N
1
=53 (359

For line, surface or volume charge distributions, the discrete
sum total energy formula above becomes a continuous sum (in-
tegral) over the respective charge distribution. The point charge
term is replaced by the appropriate differential element of charge
for a line, surface or volume distribution: pydL, psds or p,dv. The
overall potential acting on the point charge ;. due to the other
point charges (V}) is replaced by the overall potential (v) acting
on the differential element of charge due to the rest of the charge
distribution. The total energy expressions becomes

1
W, = §/pLdL (Line Charge) (3.90)
L
1
W, = 5/,05053 (Sur face Charge) (3.91)
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1
W, = 5 / pudv  (Volume Charge) (3.92)
If a volume charge distribution p, of finite dimension is enclosed

by a spherical surface Sy of radius ry, the total energy associated
with the charge distribution is given by

Figure 3.12: Distribution of volume charge
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W, = lim %/pUVdv = lim B/(VoD)Vdv] (3.93)

To—>00
v

Using the following vector identity,

(VeD)YWV =Ve(VD)—DeVV (3.94)

the expression for the total energy can be written as

rog—00 To—00

1 1
W, = lim 5 /[V e (VD)]dv| — lim 5 /(D o VV)dv
(3.95)
If we apply the divergence theorem to the first integral, we find

W, = lim B#VD ods] — lim %/(D o VV)dv| (3.96)

79— 00 7g—00
v

For each equivalent point charge (p,dv) that makes up the
volume charge distribution, the potential contribution on .Sy varies
as v~ ! and electric flux density (and electric field) contribution
varies as r~2. Thus, the product of the potential and electric flux
density on the surface So varies as r 3. Since the integration over
the surface provides a multiplication factor of only r2, the surface
integral in the energy equation goes to zero on the surface Sy of
infinite radius. This yields where the integration is applied over
all space. The divergence term in the integrand can be written in
terms of the electric field as

E=-VV (3.97)
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such that the total energy (J) in the electric field is

W%// DoEdv%/U//eo(EoE)dv%/v//eoEgdv
(

3.98)
This can also be expressed as

aw, 1 _,
- = ek (3.99)

dWw,
dv

is called the energy density and is given in J/m3.
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3.4 GAUSS’S LAW:

Johann Carl Friedrich Gauss: (30
April 1777 — 23 February 1855) was
a German mathematician and physical
scientist who contributed significantly
to many fields, including number the-
ory, statistics, analysis, differential ge-
omelry, geodesy, geophysics, electro-
statics, astronomy and optics.
Sometimes referred to as the Princeps
mathematicorum (Latin, "the Prince of
Mathematicians” or "the foremost of mathematicians")
and "greatest mathematician since antiquity”, Gauss had
a remarkable influence in many fields of mathematics and
science and is ranked as one of history’s most influen-
tial mathematicians.He referred to mathematics as "the
queen of sciences’.

3.4.1 ELECTRIC FLUX DENSITY:

Consider a set of concentric metallic spheres, the outer one consist-
ing of two hemi-spheres which could be firmly clamped together.

1. with the equipment dismantled, the inner sphere was given
a known positive charge.

2. the hemispheres were then clamped together around the charged
sphere with about 2cm of dielectric material between them

3. The outer sphere was discharged by connecting it momentar-
ily to ground
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4. The outer sphere was separated carefully, using tools made
up of insulating material in order not to disturb the induced
charge on each hemisphere, and the negative induced charge
on each hemisphere was measured. See fig. below

Faraday's Experiment

Figure 3.13: Faraday’s experiment

It can be found that the total charge on the outer charge was
equal in magnitude to the original charge placed on the inner
sphere and this was true regardless of the dielectric material sep-
arating the two spheres. There was some sort of a "displacement"
from the inner sphere to the outer sphere which was independent
of the medium, this as the displacement flux density or electrical
flux. Electrical flux is represented by v
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Y =Q

and the electrical flux is measured in Coulombs. Electric flux
density is represented by the letter D because of the name that
was given initially "Displacement flux density". The electrical lux
density D is a vector and is a member of the flux density class
of vector fields. The direction of D at a point is the direction of
the flux lines at that point, and the magnitude is given by the
number of flux lines crossing a surface normal to the lines dived
by the surface area. Refer to the fig. below

Metal [nsulating or
conducting dielectric
spheres ~ material

Figure 3.14: The electric flux in the region between a pair of charged con-
centric spheres

The electric flux density is in the radial direction and has a
value of
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Q

D = ——a,

r=a ira?

Dl = amp2

and at a radial distance of r, a <r <b
Q

D=—"_q, 3.100
47r7“2a ( )

If we compare this result with the equation for electric field inten-
sity of a point charge in free space

Q

4Aeyr?

(3.101)

So in free space

D = EoE I
For a general charge distribution £ and D are given by
Pudv
E—
/ 4degR? R
pudv
D —
/ a2t

The fig. below shows clearly what is the flux passing through

an open surface.
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/
Air Home —
u

fer)d

}1_(} |
()

Figure 3.15: Electric flux through an open surface

)

3.4.2 GAUSS’S LAW:

From the above it can be seen that the electric flux passing through
any imaginary spherical surface lying between the two conduct-
ing spheres is equal to the charge enclosed within that imaginary
surface. This enclosed charge can be a charge that is distributed
on the surface of the inner sphere, or it may be concentrated as
a point charge at the center of the imaginary sphere. also as one
Coulomb of charge produces one coulomb of flux, the inner con-
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ductor might as well be a cube or a queer shaped metal piece and
still the total induced charge on the outer sphere would still be
the same. The flux distribution will no longer be the same as the
previous symmetrical distribution, but it will be some unknown
distribution. If the outer hemisphere is replaced by a closed sur-
face of any odd shape, still the result will be the same. The gen-
eralization of this concept leads to the following statement which
is known as GGauss law:

The electrical flux ¢ passing through any closed surface
is equal to the total charge enclosed by that surface.

Gauss’s law constitutes one of the fundamental laws of electro-

magnetism.

3.4.2.1 GAUSS’S LAW AND MAXWELL’S EQUATION:

If the flux emanating from a closed surface is v then

Y = Qenc (3.102)

zp:%dzp:ygz).ds:@:/pvdv
%Dods:/pvdv (3.103)

By applying divergence theorem to the first term in the above

that is

equation
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;lgD ods = /(V e D)dv = /pvdv (3.104)

v v

which gives

VeD = p, (3.105)

§1§D ods = /pvdv (3.106)

S v

which is the first of the four Maxwell’s equations both in dif-
ferential and integral form.

3.4.2.2 POTENTIAL GRADIENT:
The electric field at any general point is given by
_>
0 7

r —r

= 3.107
47T€0 |7" . 7“/‘3 ( )

Every expression for E whether it is because of a point charge or
because of a general charge distribution contains the term

— 7
r —r
P (3.108)

hence we want to find the curl of the above quantity and show
how FE is related to V' the potential. From vector calculus
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- 1 = = 1 —_
\7“—7“'3:|r r|? (r=m)+ v\r r|? e
Vx(7-7)=0
o 1 3?—7”
2 =

The above results together with the observation that the cross
product of a vector with a parallel vector is zero, is sufficient to
prove that

rdid
Vx " —0 (3.100)
=T

So this shows that the curl of the electric field is zero. Then from
vector calculus we know that if the curl of a vector is zero then the
vector can be expressed as the gradient of a scalar point function.
Also it can be seen that

- 7
— 1
_ @ 4 [ ¢ —] (3.110)
dmeg |r — 1| dmey |r — 1’|
where 0 |
V = _ 3.111
Aeg |r — 7’| ( )

is the scalar potential. Hence E and V' are related by
E=-VV

3.4.2.3 Static Electric Field And The Curl:
It is seen that

%E.ﬂ:o (3.112)
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and
E=-VV (3.113)

So if we apply the Stoke’s theorem

Eedl= [ (VXE)eds=0 (3.114)
prea-]

S

This is true for any ds , so

VxE=0 (3.115)

So the second of the Maxwell’s equations, both in integral and
differential form, which describe the electric field is

%Eodl =

VXxFE =

-}

(3.116)
(3.117)

-}

The Maxwell’s equations which describe the static electric field
are given below
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Differential Integral Form
Form

VeD =p, ¢, D eds =
fvpvdv

VXxE=0 | ¢ Eedl =0

Table 3.1: Maxwell’s Equations

3.4.3 Applications

3.4.3.1 Electric Forces in Biology

Classical electrostatics has an important role to play in modern
molecular biology. Large molecules such as proteins, nucleic acids,
and so on—so important to life—are usually electrically charged.
DNA itself is highly charged; it is the electrostatic force that not
only holds the molecule together but gives the molecule structure
and strength. The distance separating the two strands that make
up the DNA structure is about 1 nm, while the distance separating
the individual atoms within each base is about 0.3 nm. One might
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wonder why electrostatic forces do not play a larger role in biology
than they do if we have so many charged molecules. The reason is
that the electrostatic force is “diluted” due to screening between
molecules. This is due to the presence of other charges in the cell.

3.4.3.2 Polarity of Water Molecules

The best example of this charge screening is the water molecule,
represented as H2 O . Water is a strongly polar molecule. Its
10 electrons (8 from the oxygen atom and 2 from the two hydro-
gen atoms) tend to remain closer to the oxygen nucleus than the
hydrogen nuclei. This creates two centers of equal and opposite
charges—what is called a dipole. The magnitude of the dipole is
called the dipole moment. These two centers of charge will termi-
nate some of the electric field lines coming from a free charge, as
on a DNA molecule. This results in a reduction in the strength of
the Coulomb interaction. One might say that screening makes the
Coulomb force a short range force rather than long range. Other
ions of importance in biology that can reduce or screen Coulomb
interactions are Na™ , and Kt , and C1~ . These ions are located
both inside and outside of living cells. The movement of these ions
through cell membranes is crucial to the motion of nerve impulses
through nerve axons. Recent studies of electrostatics in biology
seem to show that electric fields in cells can be extended over larger
distances, in spite of screening, by “microtubules” within the cell.
These microtubules are hollow tubes composed of proteins that
guide the movement of chromosomes when cells divide, the mo-
tion of other organisms within the cell, and provide mechanisms
for motion of some cells (as motors).
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3.4.3.3 Earth’s Electric Field

A near uniform electric field of approximately 150 N/C', directed

downward, surrounds Earth, with the magnitude increasing slightly
as we get, closer to the surface. What causes the electric field? At

around 100 km above the surface of Earth we have a layer of

charged particles, called the ionosphere. The ionosphere is re-

sponsible for a range of phenomena including the electric field

surrounding Earth. In fair weather the ionosphere is positive and

the Earth largely negative, maintaining the electric field. In storm

conditions clouds form and localized electric fields can be larger

and reversed in direction (Figure 18.34(b)). The exact charge

distributions depend on the local conditions, and variations are

possible. If the electric field is sufficiently large, the insulating

properties of the surrounding material break down and it becomes

conducting. For air this occurs at around 3x 10 N/C'. Air ionizes

ions and electrons recombine, and we get discharge in the form of
lightning sparks and corona discharge.
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Lightning

3.4.3.4 Applications of Conductors

On a very sharply curved surface, such as shown in Figure , the
charges are so concentrated at the point that the resulting elec-
tric field can be great enough to remove them from the surface.
This can be useful. Lightning rods work best when they are most
pointed. The large charges created in storm clouds induce an
opposite charge on a building that can result in a lightning bolt
hitting the building. The induced charge is bled away continually
by a lightning rod, preventing the more dramatic lightning strike.
Of course, we sometimes wish to prevent the transfer of charge
rather than to facilitate it. In that case, the conductor should
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be very smooth and have as large a radius of curvature as possi-
ble. (See Figure 18.37.) Smooth surfaces are used on high-voltage
transmission lines, for example, to avoid leakage of charge into the
air. Another device that makes use of some of these principles is
a Faraday cage. This is a metal shield that encloses a volume. All
electrical charges will reside on the outside surtace of this shield,
and there will be no electrical field inside. A Faraday cage is used
to prohibit stray electrical fields in the environment from inter-
fering with sensitive measurements, such as the electrical signals
inside a nerve cell. During electrical storms if you are driving a
car, it is best to stay inside the car as its metal body acts as a
Faraday cage with zero electrical field inside. If in the vicinity of
a lightning strike, its effect is felt on the outside of the car and the
inside is unaffected, provided you remain totally inside. This is
also true if an active (“hot”) electrical wire was broken (in a storm
or an accident) and fell on your car.
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A Sharp Conductor and its Electric field

3.4.3.5 The Van de Graaff Generator

Van de Graaff generators (or Van de Graaffs) are not only spectac-
ular devices used to demonstrate high voltage due to static elec-
tricity—they are also used for serious research. The first was built
by Robert Van de Graaff in 1931 (based on original suggestions
by Lord Kelvin) for use in nuclear physics research. Figure shows
a schematic of a large research version. Van de Graaffs utilize
both smooth and pointed surfaces, and conductors and insulators
to generate large static charges and, hence, large voltages. A very
large excess charge can be deposited on the sphere, because it
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moves quickly to the outer surface. Practical limits arise because
the large electric fields polarize and eventually ionize surrounding
materials, creating free charges that neutralize excess charge or
allow it to escape. Nevertheless, voltages of 15 million volts are
well within practical limits.

Conductor

lon source

\"\
experimental
area

Flexible
nanconductive

Insulator

Van de Grafe generator

3.4.3.6 Xerography

Most copy machines use an electrostatic process called xerog-
raphy—a word coined from the Greek words xeros for dry and
graphos for writing. The heart of the process is shown in simpli-
fied form in Figure . A selenium-coated aluminum drum is sprayed
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with positive charge from points on a device called a corotron.
Selenium is a substance with an interesting property—it is a pho-
toconductor. That is, selenium is an insulator when in the dark
and a conductor when exposed to light. In the first stage of the
xerography process, the conducting aluminum drum is grounded
so that a negative charge is induced under the thin layer of uni-
formly positively charged selenium. In the second stage, the sur-
face of the drum is exposed to the image of whatever is to be
copied. Where the image is light, the selenium becomes conduct-
ing, and the positive charge is neutralized. In dark areas, the
positive charge remains, and so the image has been transferred to
the drum. The third stage takes a dry black powder, called toner,
and sprays it with a negative charge so that it will be attracted
to the positive regions of the drum. Next, a blank piece of paper
is given a greater positive charge than on the drum so that it will
pull the toner from the drum. Finally, the paper and electrostati-
cally held toner are passed through heated pressure rollers, which
melt and permanently adhere the toner within the fibers of the

paper.
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o s 2 S~

‘_a.-a‘l ans
&

f ‘k N

Sebanium ‘—J j

= e by
alumninum ) ey
5 e charged E Corotron
toner for papar

First stage: Second stage: Third stage: Fourth stage:
Charging Posithve image Toner attracted Toner pulled
the dirum made on dum o image froen dirum by

highty charged
paper

3.4.3.7 Laser Printers

Laser printers use the xerographic process to make high-quality
images on paper, employing a laser to produce an image on the
photoconducting drum as shown in Figure . In its most common
application, the laser printer receives output from a computer,
and it can achieve high-quality output because of the precision
with which laser light can be controlled. Many laser printers do
significant information processing, such as making sophisticated
letters or fonts, and may contain a computer more powerful than
the one giving them the raw data to be printed.
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Path ol laser
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3.4.3.8 Ink Jet Printers and Electrostatic Painting

The ink jet printer, commonly used to print computer-generated
text and graphics, also employs electrostatics. A nozzle makes a
fine spray of tiny ink droplets, which are then given an electrostatic
charge. Once charged, the droplets can be directed, using pairs
of charged plates, with great precision to form letters and images
on paper. Ink jet printers can produce color images by using a
black jet and three other jets with primary colors, usually cyan,
magenta, and yellow, much as a color television produces color.
(This is more difficult with xerography, requiring multiple drums
and toners.)
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3.4.3.9 Smoke Precipitators and Electrostatic Air Cleaning

Another important application of electrostatics is found in air
cleaners, both large and small. The electrostatic part of the pro-
cess places excess (usually positive) charge on smoke, dust, pollen,
and other particles in the air and then passes the air through an
oppositely charged grid that attracts and retains the charged par-
ticles. Large electrostatic precipitators are used industrially to
remove over 99% of the particles from stack gas emissions associ-
ated with the burning of coal and oil. Home precipitators, often in
conjunction with the home heating and air conditioning system,
are very effective in removing polluting particles, irritants, and
allergens.
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Chapter 4

POISSON’S AND LAPLACE’S
EQUATIONS:

Pierre-Simon, wmarquis de Laplace(28 March
1749 — 5 March 1827) was a French mathematician
and astronomer whose work was pivotal to the devel-
opment of mathematical astronomy and statistics. He
summarized and extended the work of his predecessors in
his five-volume Mécanique Céleste (Celestial Mechanics)
(1799-1825). This work translated the geometric study of
classical mechanics to one based on calculus, opening up
a broader range of problems. In statistics, the so-called :
Bayesian interpretation of probability was mainly developed|ll 0
formulated Laplace’s equation, and pioneered the Laplace trGnsjorin Which Gppears
in many branches of mathematical physics, a field that he took a leading role in
forming. The Laplacian differential operator, widely used in mathematics, is also
named after him. He restated and developed the nebular hypothesis of the origin of
the solar system and was one of the first scientists to postulate the existence of black
holes and the notion of gravitational collapse. Laplace is remembered as one of the
greatest scientists of all time. Sometimes referred to as the French Newton or New-
ton of France, he possessed a phenomenal natural mathematical faculty superior to
that of any of his contemporaries.[2] Laplace became a count of the First French
Empire in 1806 and was named a marquis in 1817, after the Bourbon Restoration.
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4.1. DERIVATION OF LAPLACE’S AND POISSON’S EQUATIONS:

Siméon Denis Poisson (21 June
1781 - 25 April 1840), was a
French mathematician, geometer,
and physicist. He obtained many
important results, but within the
elite Académie des Sciences he also
was the final leading opponent of
the wave theory of light and was proven wrong on that matter
by Augustin-Jean Fresnel.

4.1 DERIVATION OF LAPLACE’S AND POTS-
SON’S EQUATIONS:

The Poisson’s equation can be derived from the point form of
Gauss’s law

VeD = p,

D = €k

E = —VV
VeD = Ve (cE)=—-Ve(eVV)=p,
Vevv —

€

In the above equation € is a constant.
The equation is known as the Poisson’s equation a and in Carte-
sian coordinates it is given as
o*vV 0V 9*V

VeVV = 9 + 057 + 5.2 (4.1)
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The operation V e V is abbreviated as V? and we have

o’V 9*V 9V

2y _
vV = (9x2+(9y2 +(922

(4.2)

in cartesian coordinates.

If p, = 0, indicating zero volume charge density , but allowing
point charges, line charges, and surface charge density to exist at
singular locations as sources of the field, then

ViV =0 (4.3)

which is Laplace’s equation. The V? operation is called the Lapla-
cian of V' . In cartesian coordinates

0*V N 0?V N 0?V
ox?  0y? 022

VYV = (4.4)

In cylindrical coordinates

10 oV 1 [0%V 0%V
=l ve) taaw) e 09

In spherical coordinates

) 10 (,0V 1 9 (. 0OV 1 0V

VV=1ay, <T _> * r2sin 0 00 (Sme 80) * r2sin? § J¢?
(4.6)
Laplace’s equation is all embracing , for, applying as it does where
volume charge density is zero, it states that every conceivable
configuration of electrodes or conductors produces a field for which
V2V = 0. All these fields are different , with different potential
values and different spatial rates of change, yet for each of them
V2V = 0 . Since every field ( if p, = 0 ) satisfies Laplace,s
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equation , how can we expect to reverse the procedure and use
Laplace’s equation to find one specific field in which we happen
to to have an interest? Obviously more information is required,
and we shall find that we must solve Laplace’s equation subject
to certain boundary conditions.

Every physical problem must contain at least one conducting
boundary and usually contains two or more . The potentials on
these boundaries are assigned values, perhaps Vj, Vi, -+ or per-
haps numerical values. These definite equipotential surfaces will
provide the boundary conditions for the type of problem to be
solved . In other types of problems , the boundary conditions
take the form of specified values of E on an enclosing surface, or a
mixture of known values of V and F . It is necessary to show that
if our answer satisfies the Laplace’s equation and also satisfies the
boundary conditions, then it is the only possible answer.

4.1.1 UNIQUENESS THEOREM:

Let us assume that we have two solutions of Laplace’s equation, V;
and V5 , both general functions of the coordinates used. Therefore

ViV =0 (4.7)
and
V2V, =0 (4.8)
from which
V2(Vi— 1) =0 (4.9)

Each solution must also satisfy the boundary conditions , and if
we represent the given potential values on the boundaries by V}, |
then the value of V7 on the boundary V3, and the value of V5 on
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the boundary V5, must both be identical to V},

Vip=Vay =V (4.10)
or

Vie — Vo =0 (4.11)
Using the vector identity which will hold for for any scalar Vand
vector D

Ve(VD)=V(VeD)+De(VV) (4.12)
For the present we will assume that V' = V; — V4 is the scalar and
V (Vi — V3) as the vector, giving
Ve[(Vi = Vo) V(Vi =)= (Vi = V5) [VeV (VI — Vz)]+V<(V! —) Va)eV (Vi —V3)
4.13

which we will integrate throughout the volume enclosed by the
bounding surfaces specified

[ Vo=V Y 0h =)l = [ (03— Vi) [V 0 V (V= Va9 (V= Vi)V (V
vol vol
(4.14)
The divergence theorem allows us to replace the volume integral
on the left side of the equation by the closed surface integral over
the surface surrounding the volume. this surface consists of the
boundaries already specified on which Vj;, = V5, , and therefore

[ Vel = Vo)V (Vi = Vi)l o = b (Vi = Vi)V (Vi — Van)Jods = 0

vol s

(4.15)
One of the factors of the first integral on the right side is VeV (1 —
Va)or V2(Vi —V3) which is zero by hypothesis , and therefore that
integral is zero. Hence the volume integral must be zero.

/ [V (Vi — V3P dv =0 (4.16)

vol
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There are in general two reasons why an integral may be zero:
either the integrand ( the quantity under the integral sign ) is ev-
erywhere zero, or the integrand is positive in regions and negative
in others, and the contributions cancel algebraically. In this case
the first reason must hold good because [V (V] — 14)]? can not be
negative. Therefore

V(=W =0 (4.17)
and
V(Vi - Va) =0 (4.18)

Finally, if the gradient of V; — V5 is everywhere zero , then V; — V5
can not change with any coordinates and

Vi — Vo = Constant (4.19)

If we can show that tbhis constant is zero, we shall have accom-
plished our proof . The constant is easily evaluated by considering
a point on the boundary . Here Vj; — Vo = Vj, — Vo, = 0, and we
see that the constant is indeed zero, and therefore

Vi =V, (4.20)

giving two identical solutions.

The uniqueness theorem also is applicable to Poisson’s equa-
tion, for if V214 = —2 and V2V, = —£  then , V*(V; —15) = 0
as before. Boundary conditions still require that Vi, — Vo, = 0,
and the proof is identical from this point.

4.1.2 EXAMPLES:

Several methods have been developed for solving the second order
partial differential equation known as Laplace’s equation . The
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first and simplest method is that of direct integration, and we shall
use this technique to work several examples in various coordinate
systems.

The method of direct integration is applicable only to problems
which are one dimensional or in which the potential field is a func-
tion of only one of the three coordinates. Since we are working
with only three coordinate systems, it might seem that there are
nine problems to be solved, but a little reflection will show that a
field which varies only with x is fundamentally the same as with
y.Rotating the physical problem a quarter turn is no change. Ac-
tually, there are only five problems to be solved , one in cartesian
coordinates, two in cylindrical coordinates, and two in spherical
coordinates.

Example:

let us assume that Vis a function only of x and worry later
about which physical problem we are solving when we have a
need for boundary conditions. Laplace’s equation reduces to

0*V

Ox?

and the partial derivative may be replaced by an ordinary
derivative , since V' is not a function of y or z |

—0 (4.21)

d*V
— =0 4.22
T3 (4.22)
we integrate twice , obtaining
av
—=A, V=Arx+B (4.23)
dx

where A and B are constants of integration. These constants can
be determined only from the boundary conditions. Since the field
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4.1. DERIVATION OF LAPLACE’S AND POISSON’S EQUATIONS:

varies only with x and is not a function of yand z , then V is
a constant if x is a constant or in other words, the equipotential
surfaces are described by setting x constant. These surfaces are
parallel planes normal to the xraxis. the field is thus of a parallel
plate capacitor,and as soon as we specify the potential on any two
planes , we may evaluate our constants of integration.

Let V=V, at t = rjand V = Vo at x = x5 . These values are
then substituted giving

Vi = Ax1+ B
‘/2 = AJZ2+B
el OO Lo S A G
T1 — T2 T1 — T2
Vi(z — — Vo(z —
y = ez m) = Vele o) (4.24)
T — X9
The general solution is
V=mx+b (4.25)

a straight line equation. f V=4 atx=1and V =0atz =5,
then m = —1 and b =5 . Then

V=-2+5 (4.26)

The above solution has two properties

1. V(x) is the average of V(z + R) and V(z — R)
V)=V R V- R] (427

Laplace’s equation is a kind of averaging instruction. It tells
you to assign to the point x , the average of the value to the
left and to the right of x .
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4.1. DERIVATION OF LAPLACE’S AND POISSON’S EQUATIONS:

i V

g s s

—_—

Figure 4.1: Graph Of V = —x +5

2. Laplace’s equation tolerates no local maxima . Extreme val-
ues of V' must occur at the end points . This is a consequence
of property 1 .

A simple answer would have been obtained by choosing simpler
boundary conditions. If we had fixed V = 0atx = 0and V =
Voat © = d , then

Vo
A= 2
d
B =0
and v
V:%x (4.28)

Suppose our primary aim is to find the capacitance of a parallel
plate capacitor. We have solved Laplace’s equation , obtaining the
two constants A and B . We are not interested in the potential
field itself , but only in the capacitance, then we may continue
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4.1. DERIVATION OF LAPLACE’S AND POISSON’S EQUATIONS:

successfully with A and b or we may simplify the algebra by little
foresight. Capacitance is given by the ratio of charge to potential
difference , so we may chose now the potential difference as Vj ,
which is equivalent to one boundary condition, and then choose
whatever second boundary condition seems to help the form of the
equation the most. This is what we did while choosing the second
set of boundary conditions. The potential difference is fixed as
Vo by choosing the potential of plate zero and the other Vj; the
location of these plates was made as simple as possible by letting
V=0at x=0.

We still need the total charge on either plate before the capac-
itance can be found. The necessary steps are these

1. Given V, use £ = —VV to find £

2. Use D =¢€FE to find D

3. Evaluate D at either of the plates , D = Dy, = Dyay
4. Recognize that p, = Dy

5. Find @) by surface integration over the capacitor plate , ) =
S, psds
S

Here we have
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4.2. ELECTRIC DIPOLE

V = VOE
E = —%ax
D = —e%ax
Dy = D|,_,= e%aw
any = a,
Dy = —6%:,05
and the capacitance is
c-t_=

4.2 Electric Dipole

(4.29)

4.2.1 POTENTIAL AND ELECTRIC FIELD OF A DIPOLE:

An electric dipole is formed by two point charges of equal magni-
tude and opposite sign (+@Q, —@Q) separated by a short distance
d. The potential at the point P due to the electric dipole is found

using superposition.
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4.2. ELECTRIC DIPOLE

ﬁ% R AP
+0¢—— "
M //
42 ,}/
0 V=V, +V.

0 ., 0

=4“59R+ 4ne R
0|1 _1

" 4me,|R, R

+

Figure 4.2: Dipole

If the field point P is moved a large distance from the electric
dipole (in what is called the far field, > d the lines connecting
the two charges and the coordinate origin with the field point
become nearly parallel.
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4.2. ELECTRIC DIPOLE

— =
d =
—cosh =~
2 )
£ 10 e Ch
R e
' s P _
d/? ,../}f" R, %r-—cosO
D 2
e R_=r+—=cosb
| R ,,//
| R
e &
0y
-0z
14_1:059
Figure 4.3: Far field approximation
1 1
Vo = E d - d
dmey |r — Gcos r+ Gcosd
V o~ Q _(7"—|— gcose) —(r— gcose)
A1e ] (7"2 — dzz cos? 0)
as r > d the far field is
QQd cos 6
V=2"""" 4.30
Aegr? (4:30)

The electric field produced by the electric dipole is found by
taking the gradient of the potential.
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4.2. ELECTRIC DIPOLE

ov 10V
V = —VE = — {Ear + ;%agl
o Qd ] 0 (1 10
= e, _cos 987’ (72) a, + 590 (cos 9)@4
o Qd ] 2 1 :
= e -COS(9 < 7“3> a, + r3( sin 9)@9]
Qd

= 13 [2 cos fa, + (sin 0)ag)
0

If the vector dipole moment is defined as

P = pa, = Qda, (4.31)

where a, points from +¢) to —(). The dipole potential and electric
field may be written as

v Qdcost  Pea,
 Amegr?  dmegr?
E P 19cos0a, + sin fay)
= cosfa, + sin fa
4Aegr Hmva

Note that the potential and electric field of the electric dipole
decay faster than those of a point charge. For an arbitrarily lo-
cated, arbitrarily oriented dipole, the potential can be written as
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4.2. ELECTRIC DIPOLE

\
# r-r
fﬂp Z V= |r-r,|)
08 I P 4ne |r-r|
Qe
b " __p:(r-7)
4me |r-r]
J;'
(7| >d)
X
Figure 4.4: Arbitrarily placed dipole
Pe (;:m
:47'('60 r —r|?
_Pe(r—1')
dmey |r — 7|
lr — 7| >>d
Dr.K.Parvatisam 151

GVP College of Engineering ( Autonomous )



4.2. ELECTRIC DIPOLE

4.2.2 Torque On A Dipole In an Electric Field

The dipole moment is given by

p=Qd (4.32)

[t is a vector directed from the negative to positive charge forming
the dipole. The potential at any point because of the dipole is

given by
pea

4Aegr?

V= (4.33)

What happens when a dipole is placed in a uniform electric field?
Will it experience a force 7 There are two charges () and —@Q)
forming the dipole, each of which experiences a force equal in
magnitude to QQF but oppositely directed, with the result that
the dipole experiences no tanslational force , as forces F; and Fy
neutralize is other, but these forces form a couple, whose torque
is equal in magnitude to force X length of the arm of the couple.

= (QE)l=QFEdsind
Qd (Esinb)
= pEsinf

N N9 S
I

= px FE
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4.2. ELECTRIC DIPOLE

Although a dipole in a uniform field does not experience a trans-
lational force , it does experience a torque tending to align the
dipole axis with the field direction.

4.2.3 Conductors, Semiconductors, and Insulators

Electrons surrounding the positive atomic nucleus are described
in terms of the total energy of the electron with respect to a zero
reference level for an electron at an infinite distance from the
nucleus. The total energy is the sum of the kinetic and potential
energies , and since energy must be given to an electron to pull it
away from the nucleus, the energy of every electron in the atom
is a negative quantity. It is convenient to associate these energy
levels , or energy states , are permissible in a given atom, and an
electron must therefore absorb r emit discrete amounts of energy
or quanta in passing from one level to another.

In a crystalline solid , such as a metal or a diamond, atoms
are packed closely together, many more permissible energy levels
are available because of the interaction forces between adjacent
atoms. it can be observed that energies which may be possessed
by electrons are grouped into broad ranges or “bands” , each band
consisting of very numerous , closely spaced, discrete levels. At
a temperature of absolute zero, the normal solid also has every
level occupied, starting with the lowest and proceeding in order
until all the electrons are located. The electrons with the highest
( least negative ) energy levels , the valance electrons are located
in the valance band. If there are permissible higher energy levels
in the valance band , or if the valance band merges smoothly into
a conduction band, then the additional kinetic energy may be
given to the valence electrons by an external field , resulting in an
electron flow. The solid is called a conductor. The filled valance
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4.2. ELECTRIC DIPOLE

band and the unfilled conduction band are shown for conductor

Eriply
conduction
3
hand Lmpty
conduction
Lmpty g o band
] conduction Encryy gap
Lpergy B [nergy wap
Filled I'illzed lilled
valence valence valence
band band band
Condugtor Tngulator Semiconiueror

() (B) {ch

If however the electron with the greatest energy occupies the
top level in the valance band and a gap exists between the valance
band and the conduction band , then the electron cannot accept
additional energy in small amounts and the material is an insu-
lator. The band structure is indicated in the above figure. Note
that if a relatively large amount of energy can be transferred to
the electron , it may be sufficiently excited , to jump the gap into
the next band , where conduction occur easily. here the insulator
breaks down.

An intermediate condition occurs when only a small “ forbidden
region separates the two bands as indicated in the figure. Small
amounts of energy in the form of heat, or an electric field may
raise the energy of the electrostatic the top of the filled band and
provide the basis for conduction. These materials are insulators
which display many of the properties of the conductors and are
called semiconductors.

4.2.4 Conductor free space boundary

What happens when suddenly the charge distribution is unbal-
anced within a conducting material/ Let us suppose that there
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4.2. ELECTRIC DIPOLE

suddenly appear a number of electrons in the interior of the con-
ductor. The electrical field setup by these electrons are not coun-
tered by any positive charges, and the electrons begin to accelerate
away from each other . this continues until the electrons reach the
surface of the conductor . Here the outward progress of the elec-
trons is stopped , for the material surrounding the conductor is
an insulator, not possessing a conduction band. No charge will
remain within the conductor Hence the final result within a con-
ductor is zero charge density , and a surface charge density resides
on the exterior surface.

also for static conditions in which no current may flow , the
electric field intensity within the conductor is zero.

So for electrostatics , no charge and no electric field may exist at
any point within a conductor. charge may appear on the surface
as surface charge density. Ther will be a field external to the
conductor , and this field can be decomposed into two components
, one tangential and one normal to the conductor surface.

Free space ¢ f ﬁﬁﬁﬁﬁ F.

\
Y
[ / _ I"I \
k.5 Conductor

the tangential component is seen to be zero . If it were not zero
, a tangential force would be applied to the elements of the surface,
resulting in their motion and non-static conditions . Since static
conditions are assumed , the tangential electric field intensity and
electrical flux density are zero.
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4.2. ELECTRIC DIPOLE

%Eodlzo

EtAw ZO, Et =0
%DOCZS:Q:,OSAS

DyAs =psAs
Dy =ps , Dy =E; =0

In summary
1. The static electric field inside a conductor is zero

2. The static electric field intensity at the surface of a conductor
is every where normal to the surface of the conductor

3. The conductor surface is an equipotential surface
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Unit-111

Dielectric And Capacitance:

Electric field inside a dielectric material — polarization — Dielec-
tric — Conductor and Dielectric — Dielectric boundary conditions,
Capacitance — Capacitance of parallel plate and spherical and co-
axial capacitors with composite dielectrics— Energy stored and
energy density in a static electric field — Current density — con-
duction and Convection current densities — Ohm’s law in point
form — Equation of continuity



Chapter 5

Polarization

Georg Simon Ohm (16 March
1789 — 6 July 1854) was a
Bavarian (German) physicist
and mathematician. As a high
school teacher, Ohm began his
research with the new electro-
chemical cell, invented by Ital-
tan scientist Alessandro Volta.
Using equipment of his own
creation, Ohm found that there
ts a direct proportionality between the potential difference
(voltage) applied across a conductor and the resultant

electric current. This relationship is known as Ohm’s
law.

Conductors are characterized by an abundance of conduction,
or free electrons which can move. charges in a dielectric are not
able to move about freely. They are bound by finite forces. An

external electric field may displace them.
To understand, consider an atom consisting of a charge () and a
charge —() . The same picture can be used to describe a dielectric
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molecule. Since there is an equal amount of positive and negative
charge the molecule is neutral electrically. When an electric field
is applied , the positive and negative charges are displaced in space
slightly. A dipole results and the dielectric is polarized. In the
polarized state , the electron cloud is distorted by the applied
electric field £ . This distorted charge distribution is equal, by
the principle of superposition, to the original distribution plus a
dipole whose moment is p = Qd , where d is the distance vector
from —(Q and @) . If there are N dipoles in a volume Av the total
dipole moment is

N
Qidy + Qady + -+ -+ - + Qndy = Z Qrdy (5.1)
k=1

Polarization is defined as

. > ,ivzl Qrdi  dipole moment
P = lim = :
Av—0 Av unit volume

(5.2)

This type of dielectric is called non-polar. They do not posses
dipoles until an electric field is applied . Ex: Hydrogen, nitrogen,
and the rare gases.

some dielectrics have built in permanent dipoles which are ran-
domly oriented, and are said to be polar. Ex: water, sulfurdi-
oxide, hydrochloric acid etc,, When an electric field is applied ,
the dipole experiences a torque, tending to align its dipole mo-
ment parallel to £ . The potential at any external point dV at O
is
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g Oix, v, 2}

P e ardd
AV =———
4Ameg R?
R =(z -2+ @y—y)+(z-2)

1 _CLR
V(ﬁ>_R2

P.CLR 1
eV (E)

Vie(fA)=fV'eA+AeV'f

Peap ' <P> V'erP

R2 R R

Substituting this and integrating over the entire volume

B 1 , (P VeP| |
V—/4W€0[Vo(§>— I ]dv

v/

(5.3)
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Applying divergence theorem to the first term

Ped V'eP
V= n s — dv’ 5.4
%47’(’60R s dmeg R ! (54)

S/

a) is the outward unit normal to the surface ds’ . The two terms
show that the potential is because of a surface charge distribution
and a volume charge distribution.

pps =P ® a,, — (polarization) bound surface charge
ppw =— V' ® P — Volume charge distribution

If p, is the free volume charge density , the total volume charge
density is

PT :pv+ppv =VeqkE
py =Veel—p,,=Veegk+VeP
=Ve(eE+P)=VeD

Hence
D=¢FE+ P (5.5)

The polarization P and the electric field E are linearly related for
most materials and is given by

P = x.6oF (5.6)
SO
D =¢yE + P =¢)E + xecoF =€y (1 + x¢) E
Xe is called the electric susceptibility and

1+Xe = €R (57)
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{0

D =epep
D =eFE

where

er =relative permitivity

¢p =dielectric constant of the medium

The dielectric constant (or relative permittivity) €., is the
ratio of the permittivity of the dielectric to that of free
space.

It should also be noticed that ¢,and . are dimensionless whereas
e and ¢ are in farads/meter. The approximate values of the di-
electric constants of some common materials as are given in Table.
The values given in Table are for static or low frequency (<1000
Hz) fields; the values may change at high frequencies. Note from
the table that e, is always greater or equal to unity. For free
space and non dielectric mate-rials (such as metals) ¢, = 1. The
theory of dielectrics we have discussed so far assumes ideal di-
electrics. Practically speaking, no dielectric is ideal. When the
electric field in a dielectric is sufficiently large, it begins to pull
electrons completely out of the molecules, and the dielectric be-
comes conducting. Dielectric breakdown is said to have occurred
when a dielectric becomes conducting. Dielectric breakdown oc-
curs in all kinds of dielectric materials (gases, liquids, or solids)
and depends on the nature of the material, temperature, humidity,
and the amount of time that the field is applied. The minimum
value of the electric field at which dielectric breakdown occurs is
called the dielectric strength of the dielectric material.

The dielectric strength is the maximum electric field that
a dielectric can tolerate or withstand without breakdown.
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5.0.1 Linear, Isotropic, And Homogeneous Dielectrics

. A material is said to be linear if D varies linearly with E and
nonlinear otherwise. Materials for which € (or o) does not vary in
the region being considered and is therefore the same at all points
(i.e., independent of x,y, z) are said to be homogeneous. They
are said to be inhomogeneous (or non homogeneous) when ¢ is
dependent of the space coordinates. The atmosphere is a typical
example of an inhomogeneous medium; its permittivity varies with
altitude. Materials for which D and E are in the same direction
are said to be isotropic. That is, isotropic dielectrics are those
which have the same properties in all directions. For anisotropic

(or non isotropic) materials, D, E, and P are not parallel; € or y,
has nine components that are collectively referred to as a tensor.
Crystalline materials and magnetized plasma are anisotropic.

A dielectric material (in which D = e¢F applies) is linear if
¢ does not change with the applied F field. Homogeneous
if € does not change from point lo point, and isotropic if
€ does not change with direction.

5.0.2 Continuity Equation And Relaxation Time

Due to the principle of charge conservation, the time rate of de-
crease of charge within a given volume must be equal to the net
outward current flow through the closed surface of the volume.
Thus current I,,; coming out of the closed surface is

d mn
Lout = 55 Jeds=— fl?t (5.8)
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where ) in is the total charge enclosed by the closed surface.
Invoking divergence theorem

%Jods:/Vonv (5.9)

S

but dQin d dpy
~et = 2 pudv = — [ S (5.10)
substituting U U
/Vojdv: — %ptvdv (5.11)
or ' ;
V.J:—é; (5.12)

which is called the continuity of current equation. It must be
kept in mind that the equation is derived from the principle of
conservation of charge and essentially states that there can be
no accumulation of charge at any point. For steady currents ,
90 — () and hence Ve J = 0 showing that the total charge

ot
leaving a volume is the same as the total charge entering it.

As

J=0cF (5.13)
and Gauss law is
Vel =" (5.14)
€
Substituting the known relations
TPy Opy
VeokE = = — 5.1
*e € ot ( )
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or 6
Po O
- U:O 5.16
5 T 2P (5.16)

this is a homogeneous linear ordinary differential equation . This
can be solved by using separation of variables method

Ipy
o Zot
Puv €
ot
lnpv =——+ lnpv()
€
Pu =Pu0€_TLT
where .
T, = — 5.17
: (5.17)

pvo 18 the initial charge density (i.e., p, at t = 0). The equation
shows that as a result of introducing charge at some interior point
of the material there is a decay of volume charge density p, .
Associated with the decay is charge movement from the interior
point at which it was introduced to the surface of the material.
The time constant 7, (in seconds) is known as the relaxzation
time or rearrangement time.

Relazxation time is the time it takes a charge placed in the
interior of a material to drop to ¢! = 36.8 percent of its
tnitial value.

It is small for good conductors and large for good dielectrics.
For example , for copper ¢ = 107" mhos/m and €, = 1 and

€,€0 1079 1 ~19
T, = =1 =153 x 10 5.18
o " 36r 58 x 107 X107 sec (5.18)
For fused quartz for instance ,0 = 10~ "mhos/sec , €, = 5.0

107 1

T.=5 =51.5D 5.19

*36r 101 s (5.19)
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showing a very large relaxation time. For good dielectrics , one
may consider the introduced charge to remain where placed.

5.0.3 Boundary Conditions:

If the field exists in a region consisting of two different media , the
conditions that the field must satisfy at the interface separating
the media are called boundary conditions. These conditions are
helpful in determining the field on one side of the boundary if the
field on the other side is known. The conditions will be dictated
by types of materials the media is made of. We will consider the
boundary conditions at an interface separating

e Diclectric(e,1) and dielectric (€,2)
e Conductor and dielectric
e Conductor and free space

To determine the boundary conditions , we need to use Maxwell’s
equations

%Ehdhzo (5.20)

and

%D.@:QWB (5.21)

Also we need to decompose the electric field intensity £ into two
orthogonal components

E=FE, +FE, (5.22)

where F; and FE, are , respectively, the tangential and normal
components of F/ to the interface of interest. A similar decompo-
sition can be done for the electric lux density D .
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5.0.3.1 Dielectric-Dielectric Boundary Conditions

Consider the F field existing in a region consisting of two different
dielectrics characterized by €1 = €pe,1 and €5 = €p€0 as shown in
the figure.

Region 1
£

Region 2

3

E7 and Es in media 1 and 2, respectively , can be decomposed
as

Ey =k + By,
Ey =E9 + Eo),

we apply the the equation (1) to the closed path abeda in the figure

assuming that the path is very small wit respect to the variation
of E.We obtain

Ah Ah Ah Ah
0= EltAw — Eln_ — Egn— — EQtAw + Egn— + Eln_
2 2 2 2
(5.23)

where E; = |E;| and E,, = |Ey| . As Ah — 0, the above equation
becomes
By = Ey (5.24)

Thus the tangential component of Eare the same on the two sides
of the boundary. In other words , E;undergoes no change on the
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boundary and it is said to be continuous across the boundary .
Since D = ¢E = D¢ + D,, we can write

D D
T By = By = 2 (5.25)
€1 €2
or D D
i (5.26)
€1 €9

that is , D undergoes some change across the interface. Hence D;
is said to be discontinuous across the interface.

D,

Dy _

" tan 1

Similarly, apply equation (2), to the pillbox (Gaussian surface).
Allowing Ah — 0 gives

AQ = psAs = D1,As — Dy, As (5.27)
or
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where p, is the free charge density placed deliberately at the
boundary. If no free charge exists at the interface ( ie., charges
are not placed deliberately placed at the interface) , ps = 0 and
the equation becomes

Dy, = Do, (5.29)

Thus the normal component of D is continuous across the bound-
ary. Since D = €¢E , the above equation can be written as

ElEln = €2E2n (530)

showing that the normal component of E is discontinuous at the
boundary. The above relations are collectively called the boundary
conditions; they must be satisfied by an field at the boundary
separating two different dielectrics.

These conditions can be combined to show the change in the
vectors D and E at the interface. Let Dy and (Eq) make an angle
01 with the normal to the surface as shown in the figure above.
Since the normal components of D are continuous

DN1 = D1 COS (91 = D2 COS 92 = DNQ (531)

the ratio of tangential components is given by
Dign1 Disinth €

= = — 5.32
DtanQ DQ sin 02 €9 ( )
or
€2D1 sin (91 = €2D2 sin 02 (533)
Combining the equations
tan (91 €1
= — 5.34
tan 82 €9 ( )

In the above figure , we have assumed that €; > €5 , and therefore

0, > 05 .
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The direction of E on each side of the boundary is identical
with the direction of D , because D = €¢E. The magnitude of D
in region 2 may be found as

2
Dy = Dl\/COSQ 0, + (6—2> sin? 0, (5.35)
€1

and the magnitude of E5 is

2
E, = F \/sin2 01 + (S> cos? 0, (5.36)

€2

An inspection of these equations shows that D is larger in the
region of larger permittivity (unless 6 = 63 = 0 , where the
magnitude is unchanged ) and that E is larger in the region of
smaller permittivity ( unless 0; = 6 = 90° | where its magnitude
is unchanged). These boundary conditions, or the magnitude and
direction relations derived from them, allow us to find quickly the

field on one side of the boundary if we know the field on the other
side.

5.0.3.2 Conductor - Dielectric Boundary:

This is the case shown in figure below.

Dr.K.Parvatisam 170
GVP College of Engineering ( Autonomous )



conductar (E'= 0) conductor {E =0

(a} (b

The conductor is assumed to be perfect. Although such a con-
ductor is not practically realizable , we may regard conductors
such as copper and silver as though they were perfect conduc-
tors. To determine the boundary conditions for a conductor-
dielectric interface , we follow the same procedure used for di-
electric -dielectric interface except that we incorporate the fact
that £/ = 0 inside the conductor. For the closed path abcda

Ah Ah Ah Ah

as Ah — 0
E, =0 (5.38)

Similarly, for the pillbox letting Ah — 0, we get

AQ = D,.As — 0.As (5.39)
because D = ¢E = 0 inside the conductor. Then
AQ
D, =—= =p, 5.40
A =7 (5.40)
or
D, = ps (5.41)
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Thus under static conditions , the following conclusions can be
made about a perfect conductor

1. No electric field may exist within a conductor : that is

ps=0 E=0 (5.42)

2. Since E = —VV =0, there can be no potential difference
between any two points in the conductor, that is a conductor
is an equipotential surface.

3. The electric field E can be external to the conductor and
normal to the surface: that is

Dy = ey, By =0 D, = ¢pe,. B, = ps (5.43)

An important application of the fact that E = 0 inside a conduc-
tor is in electrostatic screening or shielding.

If conductor A kept at zero potential surrounds conductor B
as shown in the figure above , B is said to be electrostatically
screened by A from other electric systems such as C' outside A .
Similarly, Conductor C' outside A is screened by A from b . The
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conductor A acts like a screen or shield and the electrical condi-
tions inside and outside the screen are completely independent of
each other.

5.0.3.3 Conductor Free space Boundary Conditions

This is a special case of the conductor-dielectric conditions and is
shown in the figure below.

The boundary conditions at the interface between a conductor
and free space can be obtained by replacing ¢, = 1 . We expect
the electric field E to be external to the conductor and normal to
its surface. Thus the boundary conditions are

Dt = E()Et =0 Dn = E(]En = Ps (544)

it should be noted that the above equation implies that E field
must approach a conducting surface normally.
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5.1. CAPACITANCE

5.1 Capacitance

A capacitor is an electrical device composed of two conductors
which are separated by a dielectric medium and which can store
equal and opposite charges, independently of whether other con-
ductors in the system are charged or not.

The capacitance between two conducting bodies is defined as

Q
=7 (5.45)
@ is charge in Coulombs and V' is the potential difference between
conducting bodies. When the capacitance of a single conductor
is referred to, it is tacitly assumed that the other conductor is a
spherical shell of infinitely large radius.

Consider conductors 1 and 2 of arbitrary shape, as shown below

+
T -
+
+ X 1
. M )
+
+
_|_
+
2l
£ T T
B dielectric + o
o o HE
— - a5 T
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5.1. CAPACITANCE

Work is done on moving a charge from one conductor to the
other. consequently a potential difference is established between
them. Conversely a P.D of V' volts is applied between the con-
ductors 1 and 2 , charges () and —q will be built up on the con-
ductors. there is a definite relationship between the charge and
the Potential difference and the ratio between the two is constant,
determined from the geometrical configuration of any particular
system of conductors.

If a charge of 1 Coulomb is associated with a voltage of 1V |
the capacitance between the conductors is 1 Farad . 1 Farad is a
very large quantity so capacitance is normally given in terms of
micro, or pico Farads.

5.1.1 Parallel plate capacitor

Conductor surface A —pg 2=

Uniform surface /
charge density

2 ) + Ps
Conductor surface Y Ps

Assume that the charge density on the plates is equal to p, C'/m?
. The dielectric has € = €,¢y , then
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5.1. CAPACITANCE

Q
D: 8:_
Ps =4
D s
p-=2_27
€ €€

Potential difference between the plates is given by the integral
of E over the separation of the plates d

V=r5d="' (5.46)
€€
Q psA €€
C = Vel — (5.47)

5.1.2 Spherical Capacitor

Q
E = b
g a<r<
qg |1 1
Viae = - — =
" drey [a b]
O Q Q _ Amegab
_‘/ba B % B (b_ CL)
47r60[5—§]

as b — oo , C' for an isolated sphere is 4mega Farads .

5.1.3 ENERGY STORED IN AN ELECTROSTATIC
FIELD:

The amount of work necessary to assemble a group of point charges
equals the total energy (W,) stored in the resulting electric field.

Example (3 point charges): Given a system of 3 point charges,
we can determine the total energy stored in the electric field of
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5.1. CAPACITANCE

these point charges by determining the work performed to assem-
ble the charge distribution. We first define V,,,, as the absolute
potential at P, due to point charge ),,.

2 s
Pyl Al
¥ T H‘ Q?
o e
A (),
/'f :
/ )
)
Py
2

Figure 5.1: Energy to move point charges

1. Bring Q; to Pi(no energy required).
2. Bring QQ to P2 (WOI‘I{ — QQ‘/Ql).
3. Bring Qg to P3 (WOI’k — Qg‘/gl + Qg‘/gg)

The total work done W, = 0 4+ @2V + Q3V31 + Q3V30
If we reverse the order in which the charges are assembled, the
total energy required is the same as before.

1. Bring Q3 to P5 (No energy required)
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5.1. CAPACITANCE

2. Bring Qs to Py (work=0Q,V53)
3. Bring Qito Py ( work done = @Q1Vis + Q1Vi3)

Total work done W, = 0 + Q2Va3 + Q1Via + Q1Vi3
Adding the above two equations

2We = Q1Vi2 + Q1Viz + Q2Var + Q2Vaz + Q3V31 + Q3V32 (5.48)

W, = % [(Q1(Vig + Vi3) + Qa(Var + Vag) + Q3(Va1 + Vaa)] = % [Q1VI+ Q2Va + Qo
(5.49)
where V;,, is the total absolute potential at P, affecting @),,.
In general, for a system of N point charges, the total energy in
the electric field is given by

N
1
W.=3 ; QiVi (5.50)

For line, surface or volume charge distributions, the discrete
sum total energy formula above becomes a continuous sum (in-
tegral) over the respective charge distribution. The point charge
term is replaced by the appropriate differential element of charge
for a line, surface or volume distribution: pydL, psds or p,dv. The
overall potential acting on the point charge () due to the other
point charges (V}) is replaced by the overall potential (v) acting
on the differential element of charge due to the rest of the charge
distribution. The total energy expressions becomes

1
W, = §/pLdL (Line Charge) (5.51)
L
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5.1. CAPACITANCE

1

W, = §/psds (Surface Charge) (5.52)
1

W, = §/pvdv (Volume Charge) (5.53)

v
If a volume charge distribution p, of finite dimension is enclosed
by a spherical surface Sy of radius ry, the total energy
associated with the charge is given by

Figure 5.2: Distribution of volume charge
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5.1. CAPACITANCE

W, = lim %/pUVdv = lim B/(VoD)Vdv] (5.54)

To—>00
v

Using the following vector identity,

(VeD)YWV =Ve(VD)—DeVV (5.55)

the expression for the total energy can be written as

rog—00 To—00

1 1
W, = lim 5 /[V e (VD)]dv| — lim 5 /(D o VV)dv
(5.56)
If we apply the divergence theorem to the first integral, we find

W, = lim B#VD ods] — lim %/(D o VV)dv| (5.57)

79— 00 7g—00
v

For each equivalent point charge (p,dv) that makes up the
volume charge distribution, the potential contribution on .Sy varies
as v~ ! and electric flux density (and electric field) contribution
varies as r~2. Thus, the product of the potential and electric flux
density on the surface So varies as r 3. Since the integration over
the surface provides a multiplication factor of only r2, the surface
integral in the energy equation goes to zero on the surface Sy of
infinite radius. This yields where the integration is applied over
all space. The divergence term in the integrand can be written in
terms of the electric field as

E=-VV (5.58)
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5.2. CURRENT AND CURRENT DENSITY:

such that the total energy (J) in the electric field is

We:%/v/ DoEdv:%/U//GO(EQE)dv:%/U//EOEQdU
(

5.59)
This can also be expressed as

dW. 1
- = Sek? 5.60
dv 260 ( )
% is called the energy density and is given in J/m3.

5.2 Current and Current density:

Electrical charges in motion constitute current. The unit of cur-
rent is Ampere and is defined as the rate of movement of charge
passing a given reference point ( or passing a given reference plane
) of one coulomb/sec. Current is denoted by I

dQ
I = ’r (5.61)
Current is thus defined by the motion of the positive charges,
even though conduction in metals takes place through the motion
of electrons.
In field theory events occurring at a point, rather than within
a small region are of interest, and the concept of current density,
measured in Amperes/sq.m will be more useful. Current density
is a vector represented by J .
The increment of current Al crossing an incremental surface
area, As normal to the current density is Al = Jy/As and in the

case where the current density is not perpendicular to the surface,

AT =JeAs (5.62)
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5.2. CURRENT AND CURRENT DENSITY:

//////

\ &g—) =['jyﬁy P = 2 S

Ky " AL

(@) (h)

Figure 5.3:

total current is obtained by integrating

I = /J. ds (5.63)

S

current density is related to the velocity of volume charge den-
sity at a point. Consider the element of charge

AQ = p,Av = p,AsAL (5.64)

let us assume that the charge element is oriented with its edges
parallel to the coordinate axes, and that it possesses only an x
component of velocity. In the time interval At , the element of
charge has moved a distance Ax , as indicated in the figure . We
have therefore moved a charge AQ) = p,AsAx through a reference
plane perpendicular to the direction of motion in a time increment
At , and the resultant current is

aQ
At
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5.2. CURRENT AND CURRENT DENSITY:

in the limit as At — 0 we have
Al = p,Asv, (5.66)

where v,1s the velocity in the x— direction. In terms of the current
density
Jr = Py (5.67)

and in general

J — pyv (5.68)

The above result shows very clearly that charge in motion con-
stitutes a current . This type of current is called convection cur-
rent density. The convection current density is related linearly to
charge density as well as to velocity.

5.2.1 Continuity Of current:

The principle of charge conservation states that charge can neither
be created nor destroyed , although equal amounts of positive
and negative charge may be simultaneously created, obtained by
separation, destroyed or lost by recombination.

The continuity equation follows from this principle when we
consider any region bounded by a closed surface. The current
through the closed surface is

[ = 55 J e ds (5.69)

and this outward flow of positive charge must be balanced by a
decrease of positive charge ( or perhaps an increase of negative
charge ) within the closed surface. if the charge inside the closed
surface is denoted by () , then the rate of decrease is —dd%i and
the principle of charge conservation requires that
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5.2. CURRENT AND CURRENT DENSITY:

Jzyﬁj.ds:—% (5.70)

The above equation is the integral form of the continuity equation.
The point form is obtained from the above by using the divergence

theorem.
%JOdS:/(VOJ)dU

v

daQ  d B Opy
ot T a) = o
Ipo
dv = — d
/(VOJ) v 5 1

(% v

This is true for any volume dv . This is possible only if the
integrands are equal. so

Vel=—7 (5.71)

From the physical interpretation of divergence, the above equation
indicates that the current or charge per second diverging from a
small volume per unit volume is equal to the time rate of decrease
of charge per unit volume at every point.

5.2.2 Ohm’s Law: Point Form

Consider a conductor. the valance electrons , or conduction or free
electrons , move under the influence of an electric field . With a

field E/ , an electron having a charge () = —e will experience a
force ,

F=—ckE (5.72)
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5.2. CURRENT AND CURRENT DENSITY:

In free space the electron will accelerate and continually increase
its velocity (and energy ) . In the crystalline material the progress
of the electron is impeded by continual collisions with the ther-
mally excited crystalline lattice structure, and a constant average
velocity is soon attained . This velocity Vj is termed as the drift
velocity and is linearly related to the electric field intensity by the
mobility of the electron in the given material. Mobility is denoted
by

Vi=—u.FE (5.73)
The electron velocity is in a direction opposite to the direction of
E . ue has the dimensions of square meter/Volt-second. Typical
values are

Aluminum | 0.0012

Copper | 0.0032

silver 0.0056

For good conductors a drift velocity of a few inches per second
is sufficient to produce a noticeable temperature rise and can cause
the wire to melt if the heat can not be quickly removed by thermal
conduction.

Substituting in J

J = —pep B (5.74)

The relationship between J and E for metallic conductors , is also
specified in terms of conductivity as

J=oE (5.75)
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5.2. CURRENT AND CURRENT DENSITY:

where ¢ is in mho/m. The above relation is called the point
form of Ohm’s law. The conductivity ¢ = —p.p . The values of
conductivity for Aluminum, copper, and silver are

Aluminum | 3.82 x 107

Copper 5.8 x 107

Silver 6.17 x 107

5.2.3 General Expression for Resistance

Conductivity o

—-
Area=S§ y
—_—
| 5 >
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5.2. CURRENT AND CURRENT DENSITY:

I:/Jods

S

a

Vab:—/EodL:—ELab
b

V =FL, =FEL

I V
—=— = E: -

S g OL
osV

[ =——
L

Vv _L

I os

When the field is nonuniform, the resistance is in general given
by

‘/;zb — fba E o dl
R = = 5.76
I fs oF eds ( )
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Unit-1V

Magnetostatics:

Static magnetic fields — Biot-Savart’s law — Oesterd’s experi-
ment - Magnetic field intensity (MFI) — MFI due to a straight cur-
rent carrying filament — MFI due to circular, square and solenoid
current — Carrying wire — Relation between magnetic flux, mag-
netic flux density and MFI — Maxwell’s second Equation, Ve B =
0.



Chapter 6

THE STEADY MAGNETIC
FIELD

Jean-Baptiste Biot (21 April 177}
— 3 February 1862) was a French
physicist, astronomer, and math-
ematician who established the re-
ality of meteorites, made an early
balloon flight, and studied the
polarization of light.Jean-Baptiste
Biot was born in Paris, France on
21 April 1774 and died in Paris on 3 February 1862. Biot
served in the artillery before he was appointed professor
of mathematics at Beauvais in 1797. He later went on
to become a professor of physics at the Collége de France
around 1800, and three years later was elected as a mem-
ber of the Academy of Sciences.

189



Félix Savart (30 June 1791 - 16
March 1841) was the son of Gérard
Savart, an engineer at the mili-
tary school of Metz. His brother,
Nicolas, student at Ecole Polytech-
nique and officer in the engineer-
ing corps, did work on vibration.
At the malitary hospital at Metz,
Savart studied medicine and later

he went on to continue his studies at the Universily o
Strasbourg, where he received his medical degree in 1816
[1]. Savart became a professor at Collége de France in
1836 and was the co-originator of the Biot-Savart Law,
along with Jean-Baptiste Biot. Together, they worked on
the theory of magnetism and electrical currents. Their
law was developed about 1820. The Biot-Savart Law
relates magnetic fields to the currents which are their

sources. Félix Savart also studied acoustics. He devel-
oped the Savart wheel which produces sound at specific
graduated frequencies using rotating disks.
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Hans Christian Orsted (Danish
pronunciation: [hans K'vesdjan
'®&esded]; often rendered Oersted
in English; 1/ August 1777 — 9
March 1851) was a Danish physi-
cist and chemist who discovered
that electric currents create mag-
netic fields, an tmportant aspect of
electromagnetism. He shaped post-
Kantian philosophy and advances
in science throughout the late 19th
century.[1]

In 182}, Orsted founded Selskabet for Naturlerens Ud-
bredelse (SNU), a society to disseminate knowledge of the
natural sciences. He was also the founder of predecessor
organizations which eventually became the Danish Meteo-
rological Institute and the Danish Patent and Trademark
Office. Orsted was the first modern thinker to explicitly
describe and name the thought experiment.

A leader of the so-called Danish Golden Age, Orsted
was a close friend of Hans Christian Andersen and
the brother of politician and jurist Anders Sandge
Orsted, who eventually served as Danish prime minister
(1853-54).

The oersted (Oe), the cgs unit of magnetic H-field
strength, is named after him.
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6.0.1 INTRODUCTION:

We will begin our study of the magnetic field with the definition
of the magnetic field itself and show how it arises from a current
distribution. The effect of this field on other currents, will also be
discussed.

The relation of the steady magnetic field to its source is more
complicated than is the relation of the electrostatic field to its
source. It is necessary to accept several laws temporarily on faith
alone. The proof of the laws does exist and can be covered at an
advanced level.

6.0.2 BIOT-SAVART LAW:

The source of steady magnetic field may be a permanent magnet,
an electric field changing linearly with time , or a direct current.
We shall largely ignore the permanent magnet and save the time-
varying electric field for a later discussion. The present discussion
will be concerned about the magnetic field produced by a differ-
ential dc element in free space.

We may think of this differential current element as a vanish-
ingly small section of a current carrying filamentary conductor,
where a filamentary conductor is the limiting case of a cylindrical
conductor of circular cross section as the radius approaches zero.
We assume a current [ flowing in a differential vector length of the
filament dL. The Biot-Savart law then states that at any point
P the magnitude of the magnetic field intensity produced by the
differential element is proportional to the product of the current
, the magnitude of the differential length, and the sine of the an-
gle lying between the filament and a line connecting the filament
to the point P where the field is desired. The magnitude of the
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magnetic field intensity is inversely proportional to the square of
the distance from the differential element to the point P . The
direction of the magnetic field intensity is normal to the plane
containing the differential filament and the line drawn from the
filament to the point P . Of the two possible two normals, that
one is two be chosen which is in the direction of progress of a
right handed screw turned from dL through the smaller angle to

the line from the filament P . The proportionality constant is ﬁ

This can be written concisely using vector notation as
IdL x ar IdL xR

4TR?2  4nR3
The units of magnetic field intensity H are evidently amperes per
meter (A/m ). The geometry is illustrated in the figure below.

Free space P

dH = (6.1)

(Point 1) //

dL, (Point 2)
/ AR12
/
/
L/ / dH, = 9
Figure 6.1: Biot-Savart Law
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If the current element ( source point ) is indicated by 1 and
the field point P is indicated by 2 , then
[1dL1 X AQR12

dHy = : 6.2
2 47TR%2 ( )

It is impossible to check Biot-Savart law in the above form because
the differential current element cannot be isolated and it is an
idealization. Only the integral form of the law can be verified
experimentally.

IdL x ap
H = :
§£ 47 R? (6:3)

The direction of H can be determined by the right hand rule
with the right hand thumb pointing in the direction of the current
, then the right hand fingers encircling the wire show the direction
of H as shown in the figure. Alternatively , we can use the right
hand screw ruleto getermine the direction of H. With the screw
placed along the wire and pointed in the direction of the current
flow, the direction of advance of the screw is the direction of H.
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fa) 1]

It is customary to represent the direction of the magnetic field
intensity H ( or current / ) by a small circle with a dot or cross
sign depending on whether H (‘or I ) is out of, or into the page
as illustrated in the figure.

H (or [} is ol Hior [)isin
[a) (bl

The Biot-Savart law can also be expressed in terms of dis-
tributed sources, such as current density J and surface current
density K . Surface current flows in a sheet of vanishingly small
thickness , and the current density J , measured in amperes /
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square meter is infinite. Surface current density , however is mea-
sured in ampere/meter width and designated by K . If the surface
current density is uniform , the total current I in any width b is

I = Kb (6.4)

where we have assumed that the width b is measured perpendic-
ularly to the direction in which current is flowing. The geometry
is illustrated in the figure below. For nonuniform surface current
density , integration is necessary

- / KdN (6.5)

where dN is a differential element of the path across the current

flowing . so
IdL = Kds = Jdv (6.6)

Figure 6.2: Surface current density
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Biot-Savart law can be expressed in terms of current densities
as

K X agds

H p—
47 R?

S

JXCLR
H —
/47TR2

vol

Line current, surface current and volume current distributions
are shown in the figure below.

f Wl &

{@) b s

6.0.3 FIELD BECAUSE OF A FINITE LINE CUR-
RENT:

The figure below shows a finite length filamentary current
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Point 2

Figure 6.3: The magnetic field intensity caused by a finite length filament

Using Biot-Savart law
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Idz'a, x [pa, + (z — 2)a,]

dH = .
dr [p? + (2 = 2)?)
I dz
dH = —— "= 4,
W2 4 (s - 2
JH - I pPsec’ ozdoz%
A p?secd «
7
H = — [ (—cosa)daag
Amp
o I (s inay)
= — (sinay —sinay) a
o 2 1) Qg
For an infinitely long conductor
as =90°, a; = —90° (6.7)
resulting in
I
H=— 6.8
277 (6.8)

The magnitude of the field is not a function of ¢ or z and it varies
inversely as the distance from the filament. The direction of the
magnetic field intensity vector is circumferential. The stream-
lines are therefore circles about the filament, and the field may be
mapped in cross section as shown in figure below
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Figure 6.4: Streamlines of the magnetic field infinitely long conductor

A comparison with the map of the electric field about an infi-
nite line charge shows that the streamlines of the magnetic field
correspond exactly to the equipotentials of the electric field, and
unnamed perpendicular family of curves in the magnetic field cor-
respond to the streamlines of the electric field.

Example;

Determine H at P»(0.4,0.3,0) in the field of an 8 — A fila-
mentary current directed inward from infinity to the origin on the
positive x—axis and outward to infinity along the y—axis . The
arrangement is shown in the figure.
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8 A

S A (ZEI‘.
g
@ P\, N2y

NN %, ~ ., -
(rh,‘, / P»(0.4, 0.3, 0)

Figure 6.5:
Solution:
First consider the semi-infinite current on the x—axis, and iden-
tify the two angles a1, = —90° and a, = arctan(g3) = 53.1° .

The radial distance p is measured from the x— axis , and we have
pr = 0.3 . Thus the contribution to Hs is

= (sin53.1° + 1)a, = 2, (6.9)
47(0.3) ' $T e '
The unit vector a, must also be referred to the z— axis . We see

that this is —a, . Therefore

2x

12
Hyy = ——a.A/m (6.10)
m
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For the current on the y— axis , we have a;, = — arctan(p3) =
—36.9" and p, = 0.4 . It follows that
Hy, = 5 (1+5in36.9") (—a,) = —§az A/m  (6.11)
Y 4m(0.4) 7'('

Adding these results , we have

20
Hy = Hy, + Hyy = = —6.37a, A/m (6.12)

6.0.4 MAGNETIC FIELD AT ANY POINT ON THE
AXIS OF A CIRCULAR CURRENT LOOP:

Consider a circular current carrying loop shown in figure below

PL0, 0,

x i

{a) (b}

Figure 6.6: a)Circular current loop b)Flux lines due to current loop
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R = ha, — pa,

ha, — pa,
aRp = ———
(72 + p?]
JH — Ipdpay x (ha, — pa,)  Ipha,do N Ip%a.dg
47 [h? + pQ]% 47t [h? + pQ]% 47t [h? + pQ]%
27 27
o / Ipha,do N Ip%a.do I Ip%a.d¢
/' ar W2+ 22 Am[22 + p?]? 4 / dr h2 + p?)?
T 2
2 [h2 + p?2

Field at the center (h = 0) is

I
H=—a, (6.13)
2p

6.0.5 MAGNETIC FIELD AT ANY POINT ON THE
AXIS OF A LONG SOLENOID:

A solenoid of length [ and radius a consists of Nturns of wire and
carries a current of JTamps.
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Figure 6.7: Cross section of a solenoid

Consider the cross section of the solenoid as shown in the figure
above. Since the solenoid consists of circular loops , we apply the
result of the circular loopto find the field. The contribution to the
field H at P by an element of the solenoid of length dz is

Idla? Ta*nd
dH = S (6.14)
20a2 + 227 2[a2+ 222
where dl = ndz = (%) dz . From the figure
tan 6 _4d
z
2, 215
_|_
dz = —acosec’0dl = — M sin 6d6
a
Hence 7
dH, = —% sin 0df (6.15)
thus
02
H, = —/sin 6do (6.16)
01
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6.1. MAGNETIC FLUX AND MAGNETIC FLUX DENSITY:

1
H = % (cos by — cosby) a, (6.17)
substituting n = %
NI
H= ST (cosly — cosby) a, (6.18)
at the center of the solenoid
L
cosfy = % = —cos bty (6.19)
[+ 5]
and NI
H = —cos bra, (6.20)
If L >>aorf,=0"60, =180
NI

6.1 MAGNETIC FLUX AND MAGNETIC FLUX
DENSITY:

In frre space let us define the magnetic flux density B as
B = uH (6.22)

where B is measured in Webers/square meter (IWb/m?) or in Tesla
( T ).The constant y is not dimensionless and has the value

o = 47 x 1077 H/m (6.23)

This called the permeability of free space.
The magnetic flux density vector B , as the name implies, is a
member of the fluxdensity family of vector fields.
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6.1. MAGNETIC FLUX AND MAGNETIC FLUX DENSITY:

If we represent magnetic flux by ¢ and define ¢ as the flux
passing through any designated area

b= /Bods Wh (6.24)

For electrical flux the charge @) is the source of the field and the
flux lines begin and terminate on positive and negative charge,
respectively.

No such source has ever been discovered for the lines of mag-
netic flux . The magnetic flux lines are closed and do not terminate

on a magnetic charge . For this reason Gauss’s law for magnetic
field is

55 Beds—0 (6.25)

S

Applying divergence theorem we get

VeB=0 (6.26)

The above is not a proof but we have merely shown the truth.
This can also be shown starting from the Biot-Savart law. As-

sume that point 1 is the source point and point 2is the field point .

Then Biot-Savart law in terms of volume current dnesity is given

by

Mo Ry

BQ = — Jl X dUl (627)
4 J IRy
Then
. Ryo
VQ ° BQ = VQ L Jl X 3dU1 (628)
| Rio
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6.1. MAGNETIC FLUX AND MAGNETIC FLUX DENSITY:

from the vector identity

Ve(rzxy)=—-—zeVXxy+yeVx (6.29)
here
Ry
r=J ,y= (6.30)
|Rao|”

So using the above relation

R R
VoeBy = Z—i [_Jl o Vs X ( 123> + e Vs x (J1>:| dvy

1 R
VQ.BQ = Z—O [—Jl ° VQ X VQ (— ) + 12 L VQ X (Jl)] dvl

m Rio |R12|3
(6.32)
But
Vo x Vs [——) =0 (6.33)
? *\ R/ .
as curl of gradient of any function is zero. Also
Vo x (J1) =0 (6.34)

as Jy is a function of coordinates of point 1 and cul is taken with
respect to the coordinates of point 2 . So

Vi e By, =0 orin general Ve B =0 (6.35)

The equations above are the Maxwell’s equation for the steady
magnetic field in integral form and differential or point form.
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6.1. MAGNETIC FLUX AND MAGNETIC FLUX DENSITY:

Collecting all the equations , both for static electric fields and
steady magnetic fields we have

MAXWELL’S EQUATIONS
(STATIC FIELDS)
DIFFERENTIAL
INTEGRAL FORM OR
POINT FORM

¢, Deds= [ p,dv VeD=p,

ﬁ FEedl=0 VxE=0

SBSB‘dSZO VeB=0
Q%Hodlzsﬁsjods VxH=J

Table 6.1: Maxwell’s Equations For Static Electromagnetic Field

We will add the following equations for completeness
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Unit-V

Ampere’s circuital law and its applications:

Ampere’s circuital law and its applications viz. MFI due to
an infinite sheet of current and a long current carrying filament —
Point form of Ampere’s circuital law — Maxwell’s third equation,
Curl (H)=Jc, Field due to a circular loop, rectangular and square
loops.
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Chapter 7
AMPERE’S CIRCUITAL LAW:

André-Marie Ampére (20 January
1775 — 10 June 1836) was a French
physicist and mathematician who
1s generally regarded as one of the
main founders of the science of
classical electromagnetism, which
he referred to as "electrodynam-
ics". The SI unit of measurement
of electric current, the ampere, is
named after him.

Ampére was born on 20 January 1775
to Jean-Jacques Ampére, a prosperous
businessman, and Jeanne Antoinette Desutiéres-Sarcey Ampére
during the height of the French Enlightenment. He spent his
childhood and adolescence at the family property at Poleymieux-
au-Mont-d’Or near Lyon.[1] Jean-Jacques Ampére, a successful
merchant, was an admirer of the philosophy of Jean-Jacques
Rousseau, whose theories of education (as outlined in his treatise
Emile) were the basis of Ampére’s education. Rousseau believed
that young boys should avoid formal schooling and pursue instead
an “education direct from nature.” Ampére’s father actualized this
irierl Py-allasing his son to edpcate himself within the walls of
¥ RvelbHegekof] Hilgimeerihgeid cA dtahigimiansn)ent masterpieces such
as Georges-Louis Leclerc, comte de Buffon’s Histoire naturelle,
générale et particuliere (begun in 1749) and Denis Diderot and
Jean le Rond d’Alembert’s Encyclopédie (volumes added between
1751 and 1772) thus became Ampére’s schoolmasters. The young




Ampere’s circuital law states that the line integral of H around
any closed path is exactly equal to the direct current enclosed by
that path.

%Hodlz[ (7.1)

We define positive current as flowing in the direction of advance of
a right-handed screw turned in the direction in which the closed
path is traversed.

e

Figure 7.1: Ampere’s Circuital Law

The figure shows a circular wire carrying a direct current [/
, the line integral of H about the closed paths lettered a and b
results in an answer of I ; the integral of the closed path ¢ which
passes through the conductor gives an answer less than /I and is
exactly that portion of the total current which is enclosed by the
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path ¢ . Although the paths a and b give the same answer , the
integrands are , of course, different. The line integral directs us
to multiply the component of H in the direction of the path by
a small increment of path length at one point of the path, move
along the path to the next incremental length, and repeat the
process , continuing until the path is completely traversed. Since
H will in general vary from point to point , and since paths a and
b are not alike , the contributions to the integral made by, say |,
each millimeter of path length are quite different. Only the final
answers are the same.

We should also consider exactly what is meant by the expres-
sion “current enclosed by the path” . Suppose we solder a circuit
together after passing the conductor once through a rubber band ,
which we shall use to represent the closed path. Some strange and
formidable paths can be constructed by twisting and knotting the
rubber band , but if neither the rubber band nor the conducting
circuit is broken , the current enclosed by the path is that carried
by the conductor. Now let us replace the rubber band by a cir-
cular ring of spring steel across which is stretched a rubber sheet.
The steel loop forms the closed path, and the current conductor
must pierce the rubber sheet if the current is to be enclosed by the
path. Again, we may twist the steel loop, and we may also deform
the rubber sheet by pushing our fist into it or folding it in any
way we wish. A single current carrying conductor still pierces the
sheet once, and this is the true measure of the current enclosed
by the path. If we thread the conductor once through the sheet
from front to back and once from back to front , the total current
enclosed by the path is the algebraic sum, which is zero.

In more general language, given a closed path, we recognize this
path as the perimeter of an infinite number of surfaces ( not closed
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surfaces ). Any current carrying conductor enclosed by the path
must pass through every one of these surfaces once. certainly some
of the surfaces may be chosen in such a way that the conductor
pierces them twice in one direction and once in the other direction,
but the algebraic sum of the current is still the same.

We shall find that the closed path is usually of an extremely
simple nature and can be drawn on a plane. We need merely find
the total current passing through this region of the plane.

7.0.1 APPLICATIONS:
7.0.1.1 INFINITELY LONG FILAMENT:

Consider an infinitely long filamentary conductor carrying a cur-
rent I A . The filament lies on the z— axis in free space, and the
current flows in the direction of a,. Symmetry shows that there is
no variation with z or ¢ . Using Biot-Savart law, the direction of
dH is perpendicular to the plane containing d. and R and there-
fore is in the direction of a4 . Hence the only component of His
H, and it is a function only of p .

The path chose should be a circle of radius p and Ampere’s
circutal law becomes

2
yéH o dl = /H¢pd¢ = H¢27r,0 =7 (7.2)
0
or ]
Hy=— 7.3
= 3mp (7.3)
as before.
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7.0.1.2 INFINITELY LONG COAXIAL TRANSMISSION LINE:

Consider an infinitely long coaxial transmission line carrying a
uniformly distributed total current I in the center conductor and
—1I in the outer conductor. The line is shown in the figure below.

(a) (B)

Figure 7.2: Coaxial transmission Line

Symmetry shows that H is not a function of ¢ or z . In or-
der to determine the components present, we may use the results
of the previous example by considering solid conductors as be-
ing composed of large number of filaments. No filament has a 2
component of H . Furthermore, the H, component at ¢ = 0 ,
produced by one filament located at p = p1,¢ = ¢ , is canceled
by the H, component produced by a symmetrically located at
p=p1, ¢ =—¢1 . So only an Hy component which varies with p
remains.

A circular path of radius p , where p is larger than the radius
of the inner conductor but less than the inner radius of the outer
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conductor, then leads immediately to

I
Hy=— 4
¢ 21p (a <p<b) (7.4)

If we chose p smaller than the radius of the inner conductor, the
current enclosed is

2
p
Lonel = ]E (7.5)
and
2

2npHy = I? (7.6)

or /

p
H, = .

=5ty (p<a) (7.7

If the radius p is larger than the outer radius of the outer conduc-
tor , no current is enclosed and

Hy=0(p>c) (7.8)

Finally, if the path lies within the outer conductor , we have

2 _ 12
p-—>
2rpHy = I_[<02—b2>
I 62—p2
Hy = ——— (b<p<
¢ 27Tp62_b2 ( p C)

The magnetic field strength variation with radius is shown in the
figure given below.
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dma

)
: 0 2a 3a=b da =c

Figure 7.3: Magnetic Field Intensity For a coaxial cable

Foe the coaxial cable b = 3a and ¢ = 4a . It should be noted
that the magnetic field intensity H is continuous at all conductor
boundaries. In other words, a slight increase in the radius of
the closed path does not result in the encloser of a tremendously
different current. The value of Hy shows no sudden jumps.

The external field is zero. This, we see, results from equal pos-
itive and negative currents enclosed by the path. Each produces
an external field of magnitude #p , but complete cancellation oc-
curs. This is another example of shielding. Such a coaxial cable
carrying large currents would not produce any noticeable effect in
an adjacent circuit.

7.0.2 AMPERE’S CIRCUITAL LAW AND MAXWELL’S
EQUATION:

Ampere’s circuital law is given by
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yﬁH «dl =1L (79)

Ampere’s law is similar to Gauss’s law and it is easily applied
to determine H when the current distribution is symmetrical. It
should be noted that the above equation always holds whether the
current distribution is symmetrical or not but we can only use the
equation to determine H when symmetrical current distribution
exists. Ampere’s law is a special case of Biot-Savart law; the
former may be derived from the latter.

By applying Stoke’s theorem to the left hand side of the above
equation , we obtain

Iem:ygl-[odl:/(vxH)odSbut]:/Jods (7.10)
L

S ENCS

Comparing the surface integrals , we get

VxH=J] (7.11)

This is third of the Maxwell’s equations. It is essentially Am-
pere’s law in differential or point form. As the curl of J is not
equal to zero, the magnetostatic field is not a conservative field.
The integral form of the equation is given by

%Hodl:/Jods (7.12)

The differential and integral forms of the Maxwell’s equation for
static magnetic field is given by
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VxH=J (7.13)

%HodI:/Jods (7.14)

(7.15)

7.0.2.1 Applications Of Ampere’s Circuital Law

We now apply Ampere’s circuital law to determine H for sym-
metrical current distributions as we did for Gauss’s law. We will
consider an infinite line current , an infinite current sheet.

Infinite Line current:

Consider an infinitely long filamentary current I along the z—
axis as in the figure below. To determine H at an observation
point P , we allow a closed path pass through P .This path, on
which Ampere’s law is to be applied is known as Amperian path.
We choose a concentric circle as the Amperian path in view of the
nature of the problem which says that H is constant provided p is
constant . Since this path encloses the whole current I | according
to Ampere’s law

I= /H¢a¢ ® pdpay = H¢/pd¢ = Hy.2mp (7.16)
or
He-Lg (7.17)
~2mp ° '

Infinite Sheet Of Current:
Consider an infinite sheet in the z = 0 plane. If the sheet has
a uniform current density k =kya, A/m as shown in figure, then
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applying Ampere’s circuital law to the rectangular closed path (
Amperian path ) gives

55 Hedl = I, — kyb (7.18)

To evaluate the integral , we first need to have an idea of what H
is like.To achieve this, we regard the infinite sheet as comprising of
filaments; dH above or below the sheet due to a pair of filamentary
currents can be found . As evident in the figure , the resultant
dH has only an x— component. Also , H one side of the sheet
is the negative of that on the other side . Due to the infinite
extent of the sheet | the sheet can be regarded as consisting of
such filamentary pairs so that the characteristics of H for a pair
are the same for the infinite current sheets, that is

Hya, >0
=% c (7.19)
—Hpa, 2<0

where Hj is yet to be determined . Evaluating the line integral of
H along the closed path gives

Amperian path

— 4
— a <
—_—— 11
— K =K, /‘J 3
X

I
-

dits

fal by
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%H.dl /2+/3+/4+/1 H e dl
=0(— 1 4—2(—11310 4b)+0()+H0(b)

=2Hyb

%ky . Substituting

1k, a, >0
H-— {2 fz - (7.20)
—skya,  z2>0

From the above relations , we obtain Hy =

In general | for an infinite sheet of current density k A/m
1
H-= §k X ap (721)

where a,is the unit normal vector directed from the current sheet
to the point of interest.
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Unit-VI

Force in magnetic fields:

Magnetic force - Moving charges in a Magnetic field — Lorentz
force equation — force on a current element in a magnetic field
— Force on a straight and a long current carrying conductor in
a magnetic field — Force between two straight long and parallel
current carrying conductors — Magnetic dipole and dipole moment
— a differential current loop as a magnetic dipole — Torque on a
current loop placed in a magnetic field
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Chapter 8

MAGNETIC FORCES,
MATERIALS, AND
INDUCTANCE

Hendrik Antoon Lorentz (Arnhem, 18
July 1853 — Haarlem, 4 February 1928)
was a Dutch physicist who shared the
1902 Nobel Prize in Physics with Pieter
Zeeman for the discovery and theoreti-
cal explanation of the Zeeman effect. He
also derived the transformation equa-
tions subsequently used by Albert Ein-
stein to describe space and time.

Hendrik Lorentz was born in Arnhem, Gelderland (The Nether-
lands), the son of Gerrit Frederik Lorentz (1822-1893), a well-off
nurseryman, and Geertruida van Ginkel (1826-1861). In 1862,
after his mother’s death, his father married Luberta Hupkes. De-
spite being raised as a Protestant, he was a freethinker in religious
matters.[B 1] From 1866 to 1869 he attended the newly estab-
lished high school in Arnhem, and in 1870 he passed the exams
in classical languages which were then required for admission to

Lniversity
Dx;kedtarsatdied physics and m&Hematics at the University of Lei-
G¥E GrUesq.ofFnsineshing {MHERIPM the teaching of astron-

omy professor Frederik Kaiser; it was his influence that led him

to become a physicist.




8.0.1 FORCE ON A MOVING CHARGE:

In an electric field the definition of the field intensity shows us
that the force on a charged particle is

F=QF (8.1)

The force is in the same direction as the electric field intensity (for
a positive charge) and is directly proportional to both F and @ .
If the charge is in motion, the force at any point in its trajectory
is given by the above equation.

A charged particle in motion in a magnetic field of flux density
B is found experimentally to experience a force whose magnitude
is proportional to the product of the magnitudes of the charge ()
, its velocity v , and the flux density B , and to the sine of the
angle between the vectors v and B . The direction of the force is
is perpendicular to both v and B and is given by the unit vector
in the direction of v x B . The force therefore is expressed as

F=QuxB (8.2)

The force on a moving particle due to combined electric and mag-
netic fields is obtained by superposition as

F=Q(E+uvxB) (8.3)

The equation is known as the Lorentz’s force equation, and its
solution is required in determining electron orbits in the mag-
netron, proton paths in the cyclotron, plasma characteristics in a
magnetohydrodynamic (MHD) generator, or , in general , charged
particle motion in combined electric and magnetic fields.
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8.0.2 FORCE ON A DIFFERENTIAL CURRENT EL-
EMENT:

The force on a charged particle moving through a steady mag-
netic field may be written as the differential force exerted on a
differential element of charge,

dF = dQu x B (8.4)

The differential element of charge may also be expressed in terms
of volume charge density ,

dQ = p,dv (8.5)
thus
dF = p,dvv x B (8.6)
or
dF = J x Bdv (8.7)

but we know that Jdv = Kds = IdL and thus the Lorentz’s force
equation may be applied to surface current density

dF = K x Bds (3.8)

or to a differential current filament

dF = IdL x B (8.9)

Integrating the above equations over a volume, surface, or a closed
path | respectively , leads to the integral formulations

F = /Jdev

F:/Kdes
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and
Fz%]deB:—]yngdL (8.10)

! l
A simple result is obtained by applying the last equation to a
straight conductor in a uniform magnetic field

F=ILxB (8.11)
The magnitude of the force is given by the familiar equation
F = BILsin6 (8.12)

where 6 is the angle between the vectors representing the direction
of current flow and the direction of the magnetic flux density.
Example:
Consider the figure below.

Free space

-— 15A

(1. 0. 0) g (1, 2.0)

(3.0,0) , _/; mA

Figure 8.1: Square Loop Of Wire In The xy-plane
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We have a square loop of wire in the z = 0 plane carrying
2mA of current in the field of an infinitely long filament on the
y — axts . The field produced in the plane of the loop by the
straight filament is

I 15
H=—a.——a, A |
27ma 27ma /m (8.13)
therefore
3x 1076
B=poH =dr x10TH="""_4 T (8.14)
x
Then
F:—yngdL (8.15)

Let us assume a rigid loop so that the total force is the sum of the
forces on the four sides. Beginning with the left side:

3 3 1 1
F = —2x103x3x10° /%xdxaer %xdyay+/%xdxaw+/
x x
=1 y=1 r=3 y=3
_ -
F = —6x107° ln]‘;’ay + Y (—az) + lnx\éay -+ y]:l)) (—az)
1
o 2 1
F = —6x10" [(In3)a, — 30a + lng ay + 2a, | = —8a, pN

Thus the net force on the loop is in the —a, direction.

8.0.3 FORCE BETWEEN DIFFERENTIAL CURRENT
ELEMENTS:

[t is possible to express the force on one current element directly
in terms of a second current element without finding the magnetic
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field. The magnetic field at point 2 due to a current element at
point 1 has been found to be

. [1dL1 X AR,

dH
? 47 R,

(8.16)

Now, the differential force on a differential current element is
dF = I1dL x B (8.17)

and we apply this to our problem by letting B be dB; (the differ-
ential flux density at point 2 caused by current element at 1 ) |
by identifying IdL as I>dL, , and by symbolizing the differential
of our differential force on element 2 as d(dF3)

d(dFQ) = IQdLQ X dBQ (818)

since dBy = podH, , we obtain the force between two differential
current elements ,

L1
O47TR%2

d(dFy) = dLy x (dLy X ag,,) (8.19)
Example:

Consider two differential current elements shown in the figure.
LdL, = —3a,Am at P1(5,2,1) , and IydLy = —4a,A.m at
Py(1,8,5) .
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,{;‘—> d(d |":}

Free space - Point 2

Point 1

Figure 8.2: Force Between Two Current Elements

Thus Ri2 = —4a, + 6a, + 4a, , and we may substitute this
data in the equation resulting in

4 x 1077 (—4a;) X [(—3a,) x (—4a, + 6a, + 4a.)]
in (16 + 36 + 16)15

d(dFy) = = 8.56a, nN

(8.20)

If we find d(dFy) it is equal to —12.8a,nN which is not equal

and opposite to the force d(dFy) . The reason for this is that a

differential current element is an abstraction, and it can not exist

in practice. The continuity of current demands that a complete
circuit be considered .

So the total force between two filamentary circuits is obtained
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by integrating twice:

]1[2 I ygdLl X apR
B = p—=2q¢ |dL —Z e
2 Ho i 2 X R,
]1[2 I apr,, X dLl
Fy = po—2 S 2O dL
2 Ho i 515 R, ] X QLo

The above equation, though appears to be formidable, it is not dif-
ficult to use. It can be used to find the force between two infinitely
long, straight , parallel, filamentary conductors with separation d
, and carrying equal but opposite currents.

E:/Data_Parva/Desktop(11-10-2011) /eee_electromag

The magnetic field intensity at either wire caused by the other

is already known to be Wld . it can be seen that the force is
]2
po— newtons per meter length. (8.21)
2md

This can be derived in a different way as shown below

E:/Data_Parva/Desktop(11-10-2011)/eee_electromag
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8.0.4 FORCE AND TORQUE ON A CLOSED CIR-
CUIT:

The force on a filamentary closed circuit is given by
F= —1553 < dL (8.22)

If we assume that the magnetic field is uniform , then B can be
removed from the integral

F=—IB x yﬁdL (8.23)

but the closed line integral ¢ dL = 0 . Therefore the force on a
closed filamentary circuit in a uniform magnetic field is zero. If
the field is not uniform , the total force need not be zero.

Although the force is zero, the torque is generally not zero. In
determining the torque , or moment , of a force , it is necessary
to consider both an origin at or about which the torque is to be
calculated as well as the point at which the force is applied. See
the figure below:
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O b = O e

(a)

Figure 8.3:

We apply a force F' at point P , and we establish an origin at
O with a rigid lever arm Rextending from O to P . The torque
about point O is a vector whose magnitude is the product of the
magnitudes of R and F', and of the sine of the angle between these
two vectors. The direction of the vector torque 7" is normal to both
the force F' and lever arm R and is in the direction of progress
of a right handed screw as the lever arm is rotated into the force
vector through the smaller angle . The torque is expressible as a
cross product
T=RxF (8.24)

Now let us assume that two forces , F} at P, and Fy at Py |
having lever arms Ry and Ry extending from a common origin O
, as shown in the figure are applied to an object of fixed shape
and that the object does not undergo any translation. The torque
about the origin is

T =Ry X F} + Ry X F} (825)
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where
Fi+F =0 (8.26)

and therefore
T = (Rl — Rg) X F1 = R21 X F1 (827)

The vector Ry = Ry — Ry joins the point of application of F to
that of F} and is independent of the choice of origin for the two
vectors Ry and Ry . Therefore the torque is also independent of
the choice of origin, provided that the total force is zero.

We may therefore choose the most convenient origin , and this
is usually on the axis of rotation and in the plane containing the
applied forces if the several forces are coplanar.

8.0.4.1 TORQUE ON A DIFFERENTIAL CURRENT LOOP:

Consider that a differential current loop carrying a current I is
placed in a magnetic field B . Assume that the loop lies in the
xy— plane .

The sides of the loop are parallel to the x and y axes and are of
length dx and dy . The value of the magnetic field at the center
of the loop is taken as By Since the loop is of differential size, the
value of B at all points on the loop may be taken as By . The
total force on the loop is therefore zero, and we are free to choose
the center of the loop for calculation of torque .

The vector force on side 1 is

dFy, = Idza, x By (8.28)
where
By = By,a, + Boya, + Bysa. (8.29)
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Figure 8.4: Differential Current Loop
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SO
dFl = Idx (B()y(lz - BOZCLy) (830)

For this side of the loop the lever arm R extends from the origin
to the midpoint of the side , Ry = —%dyay , and the contribution
to the total torque is

dl} =Ry x dF}
1
= — §dyay x Idx (Byya, — By.ay)
1

The torque contribution on side 3 is found to be the same

dTg :Rg X ng

1
:§dyay X (—Idxa, x By)
1
= — §da:dyIBoyax =dT}

and
d1 + dTs = —dxdyl Byya, (8.31)

Evaluating the torque on sides 2 and 4 , we find that
dTy + dTy = dzdyl Bya, (8.32)
and the total torque is
dT' = Idzdy(Boya, — Boyay) (8.33)

The quantity within the parenthesis may be represented by a

cross product
dT = Idzdy(a, x By) (8.34)
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or

dT = Ids x B (8.35)

where ds is the vector area of the differential current loop and the
subscript on By has been dropped. Define the product of the loop
current and the vector area of the loop as the magnetic dipole
moment dm with units of a.m?. So

dm = Ids
dl' = dm x B

We should note that the torque on the current loop always
tends to turn the loop so as to align the magnetic field produced
by the loop with the applied magnetic field that is causing the
torque. This is the easiest way to determine the direction of the
torque.

Example:

Consider the rectangular loop shown. The loop has dimensions
of 1m by 2m and lies in the uniform field

By = —0.6a, + 0.8a, T (8.36)

The loop current is 4mA . Calculate the torque.
Ans:
Let us calculate the torque by using T'= Ids x B

T =4x10"%[(1)(2)a, x (-0.6a, + 0.8a.)] = 4.8a, mN.m
(8.37)
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Figure 8.5: Rectangular Loop In A Uniform Field

The loop tends to rotate about an axis parallel to the positive
x— axis . The small magnetic field produced by the 4 — mA
current tends to line up with By

8.0.5 Magnetization in Materials:

Without an external B field applied to the material, the sum of
m’s is zero due to the random orientations. When an external B
field is applied , the magnetic moments of the electrons more or
less align themselves with the B so that the net magnetic moment
is not zero.

The magnetization M (in A/m) is the dipole moment /unit
volume.

If there are NV atoms in a given volume Av and the kth atom
has a magnetic moment my

: 25:1 My

A medium for which M is not zero everywhere is said to be mag-
netized. The vector magnetic potential due to dm is

~ poM xag , pMXR
dA = R dv' = B dv (8.39)
R 1
— =V (= 8.40
= (3) (5.40)
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Hence

A:%/Mxv’ (%) dv’ (8.41)
s

(Y (Do smov « (M
MXV<R>—<R)V><M Vx(R

L A ) Mo oM
A—47T/<R)V X Mdv 4W/V X Rdv (8.43)

U/

~~

8.42)

So

From the vector identity

/V' x Fdv' = —§I§F X ds (8.44)

v’ s

we can rewrite the expression for A as

M M x a,
A:Z—O VXM X n g
T

__Ho Jb /
= / dv +§£ —b s

Jb :VXM Kb_ann

where J, = Bound current density and Ky, = Bound surface current density
. In free space M = 0 and we have

V xH=J; (8.45)

or B
VX —= Jf (8.46)

Ho
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where Jg is the free volume current density. In material medium
M # 0, and as a result B changes

B
VX —=Jet+Jdp=1J

Ho
=VxH+VxM
or
B = 1o (H + M) (8.47)
but
M =x,H, B=po (14 xm)H = pou.H (8.48)
pr =1+ Xm = ﬂ (849)
Ho

1= popt and is called the permeability of the material.

8.0.6 Magnetic Boundary Conditions:

Figure below shows a boundary between two isotropic materials
with permeabilities 1 and ps . The boundary condition on the
normal components is determined by allowing the surface to cut
small cylindrical Gaussian surface.

By

Area AS \ >
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Magnetic Boundary Conditions
Applying Gauss law for the magnetic field

yﬁB.ds —0 (8.50)

S

we find that
BN1AS — BNQAS =0 (851)
or
Bx1 = Byo (8.52)
Thus
251
Hyo = —Hpng (8.53)
2

The normal component of B is continuous , but the normal com-
ponent of H is discontinuous by the ratio % . The relationship
between the normal components of M | of course is fixed once the
relationship between the normal components of H is known. The

result is
Xm2H1

Xm1H2
Next, apply Amper’s circuital law to the rectangular loop

%Hodl _ 1 (8.55)
Taking a clockwise trip along the loop we fin that
Hy Al — Ho ANl = KA (8.56)

Mys = (8.54)

where we assume that the boundary may carry a current K whose
component normal to the plane of the closed path is K. Thus

(8.57)
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Unit-VII

Magnetic Potential:

Scalar Magnetic potential and its limitations — vector mag-
netic potential and its properties — vector magnetic potential due
to simple configurations — vector Poisson’s equations. Self and
Mutual inductance — Neumans’s formulae — determination of self-
inductance of a solenoid and toroid and mutual inductance be-
tween a straight long wire and a square loop wire in the same
plane — energy stored and density in a magnetic field. Introduc-
tion to permanent magnets, their characteristics and applications.



Chapter 9

Magnetic potential

Joseph Henry (December 17, 1797 -
May 13, 1878) was an American scien-
tist who served as the first Secretary of

the Smithsonian Institution, as well as a
founding member of the National Insti-
tute for the Promotion of Science, a pre-
cursor of the Smithsonian Institution.[1]
During his lifetime, he was highly re-
garded. While building electromagnets,
Henry discovered the electromagnetic 3
phenomenon of self-inductance. He also
discovered mutual inductance indepen-
dently of Michael Faraday, though Fara-
day was the first to publish his results.|2]|[3| Henry was the inventor
of the electric doorbell (1831)[4] and relay (1835).[5] The SI unit
of inductance, the henry, is named in his honor. Henry’s work on
the electromagnetic relay was the basis of the electrical telegraph,
invented by Samuel Morse and Charles Wheatstone separately.
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9.1. SCALAR MAGNETIC POTENTIAL:

9.1 Scalar magnetic potential:

In electrostatics ,VXE = 0. So E is expressed as —VV | where VV
is a scalar potential. This is a stepping stone which allows solving
problems using several small steps.

In magnetic fields , H can also be expressed as a gradient of a
scalar magnetic potential . So

H=-VV, (9.1)

The selection of —ve gradient will provide us with a clear analogy
to the electrical potential. The above definition should not conflict
with our previous results

VxH=J=Vx(-VV,) (9.2)

but curlgrad of any scalar is zero(vector identity). So if H is to be
defined as the gradient of a scalar , then current density must be
zero throughout the region in which the scalar magnetic potential
is so defined.

H=-VV, (J=0) (9.3)

Many magnetic problems involve geometries in which the current
carrying conductors occupy a relatively small fraction of the total
region of interest. The dimensions of V,,, are Ampere.

In free space

VeB =y yVeH=0
,uOV o (—va) =0
V3V, =0 (J=0)
Unlike electrostatic potential V,, is not a single valued function of
position.
Example:
Consider the cross section of the co-axial line shown.
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9.1. SCALAR MAGNETIC POTENTIAL:

In the regiona < p<b,J=0. So

I
H = —a¢ (94)
2mp
I is the current in the a, direction in the inner conductor.
I 1
= VV, = __%
2mp p 09
WV 1T
dp 2w
I
Vin=——
27r¢)

where the constant of integration is set to zero. What is the value
of Vi, at P 7 here ¢ = 7 . It V},, be zero at ¢ = 0 and proceed
counter clock-wise around the circle , the magnetic potential goes
negative linearly. For a full circle , the potential is —I , but that

was the point at which the potential is assumed to be zero.
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9.1. SCALAR MAGNETIC POTENTIAL:

_ 7w 97 17 i 237w
AtP,Qb—Z, _Or_T’_T ..... etc

4
I 1
‘%p:——@n—z)m(n:QiLil ..... ) (9.5)

The reason for this is

V x E =0

%Eodlzo

l

Vinah = — /H e dl (where a specific path is to be selected )
b

Magnetic scalar potential is not a conservative field.

9.1.1 Vector Magnetic Potential:
we know that for a magnetic field
VeB=0 (9.6)
From the vector identity
Ve(VxA)=0 (9.7)

So if the divergence of a vector field is zero, then this vector can
be expressed as the curl of another vector. As the divergence
of the magnetic flux density is always zero, the vector B can be
expressed as the curl of another vector. That is

B=VxA (9.8)

This can always be done for a divergence free (solenoidal) field .
The vector A is called the vector magnetic potential .
It is important to note the following:
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9.1.

SCALAR MAGNETIC POTENTIAL:

. The magnetic vector potential is defined based on the diver-

gence free condition of B .

. The definition of A is entirely based on the mathematical

properties of the vector B , not on its physical characteris-
tics . In this sense , A is viewed as an auxiliary function
rather than a fundamental field quantity. Nevertheless, the
magnetic vector potential is an important function with con-
siderable utility. we will make considerable use of the mag-
netic vector potential .

. Since the magnetic vector potential is a vector quantity |,

both its curl and divergence must be specified. The curl is
specified by the above equation. We can safely assume that
the divergence is zero (Ve A =0) .

The magnetic vector potential does not have a simple physi-
cal meaning in the sense that it is not a measurable physical
quantity like B or H . It may seem a bit unsettling to define
a physical quantity based on the mathematical properties of
another function and then use this secondary function to eval-
uate physical properties of the magnetic field. In fact there is
nothing unusual about this process. We can view the defini-
tion of the magnetic vector potential as a transformation. As
long as the inverse transformation is unique , there is nothing
wrong in A not having a readily defined physical meaning.
We can use the magnetic vector potential in any way that is
consistent with the properties of a vector field and the rules
of vector algebra. If we then transform back to the magnetic
flux density using the equation B =V x A | all results thus
obtained are correct.
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9.1. SCALAR MAGNETIC POTENTIAL:

5. because the magnetic vector potential relates to the magnetic
flux density through the curl , the magnetic vector potential
A is at right angles to the magnetic flux density B .

6. The units of A are wb/m .

Now we want to get an expression for A .

Lidl Ld
B2:V2><A2:@¢w:_@ s, X Tl
Am Ry 4m R2,

1
to this add — (V3 x [1dly) =0
Rio

Ho 1 1

B, = Ay = — | x L — I
2= V2 X A i [y{vQ(Ru)X 1 1+¢R12(V2X 1

. : Lidl 1 1
f the identit = — Ldl — I,dl
rom elenlyyszX(Ru) [§£V2<R12>X1 1+§]§R12(V2X1 )

- Ldl I,dl

we can write Bz = V2 x A :Z_;ygVQX (113121) :¢VQX (Zz ;3121>

po 11dly
B pu— A_ pu— _—
2 VQX 2 V2X¢<4ﬂ_ R12>

o Idly
A, =2
2 47T % R12

The significance of the terms in the above equation is the same
as in the Biot-Savart law : a direct current I flows along a fila-
mentary conductor of which any differential length dL is distant
R from the point at which A is to be found. Since we have defined
A only through specification of its curl , it is possible to add the
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9.1. SCALAR MAGNETIC POTENTIAL:

gradient of any scalar field to the equation for A without chang-
ing B or H, for the the curl of the gradient is identically zero. In
steady magnetic fields , it is customary to set this possible added
term equal to zero.
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Unit-VIII

Time varying fields :
Time varying fields — Faraday’s laws of electromagnetic induc-

tion — Its integral and point forms — Maxwell’s fourth equation,V x

E = —%—f — Statically and Dynamically induced EMFs — Simple

problems. Modification of Maxwell’s equations for time varying
fields — Displacement current — Poynting Theorem and
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Chapter 10

FARADAY’S LAW AND
ELECTROMAGNETIC
INDUCTION

Michael Faraday, FRS (22 September
1791 — 25 August 1867) was an En-
glish scientist who contributed to the
fields of electromagnetism and electro-
chemistry. His main discoveries include
that of electromagnetic induction, dia-
magnetism and electrolysis.

Although Faraday received little formal
education he was one of the most influ-
ential scientists in history,|[1] and histo-
rians of science|2| refer to him as having
been the best experimentalist in the his-

tory of science.|3] It was by his research

on the magnetic field around a conductor carrying a direct cur-
rent that Faraday established the basis for the concept of the elec-
tromagnetic field in physics. Faraday also established that mag-
netism could affect rays of light and that there was an underlying
relationship between the fwo phenomena [4][’)] He similarly dis-
DuJsrBamtatisaimciple of electroRdgnetic induction, diamagnetism,
GNP tfreUsss o Ensineiring (AUERBSRONS )of electromagnetic ro-
tary devices formed the foundation of electric motor technology,
and it was largely due to his efforts that electricity became viable
for use in technology.




Heinrich Friedrich Emil Lenz (12 Febru-
ary 1804 — 10 February 1865) was a Rus-
sian physicist of Baltic German ethnic-
ity. He is most noted for formulating
Lenz’s law in electrodynamics in 1833.
The symbol L, conventionally represent-
ing inductance, is chosen in his honor.[1]
Lenz was born in Dorpat (now Tartu,
Estonia), the Governorate of Livonia, in
the Russian Empire at that time. After
completing his secondary education in 1820, Lenz studied chem-

istry and physics at the University of Dorpat. He traveled with the
navigator Otto von Kotzebue on his third expedition around the
world from 1823 to 1826. On the voyage Lenz studied climatic
conditions and the physical properties of seawater. The results
have been published in "Memoirs of the St. Petersburg Academy
of Sciences" (1831).

After the voyage, Lenz began working at the University of St.
Petersburg, Russia, where he later served as the Dean of Mathe-
matics and Physics from 1840 to 1863 and was Rector from 1863
until his death in 1865. Lenz also taught at the Petrischule in
1830 and 1831, and at the Mikhailovskaya Artillery Academy.
Lenz had begun studying electromagnetism in 1831. DBesides
the law named in his honor, Lenz also independently discovered
Joule’s law in 1842; to honor his efforts on the problem, it is
also given the name the "Joule-Lenz law," named also for James
Prescott Joule.

When static conditions hold ie when time does not enter into
the picture, electricity and magnetism are two separate , some-
what parallel disciplines. This can be seen by observing that
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Maxwell’s equations, appear as two sets of equations which are
independent of each other ie the two equations describing the elec-
tric field has no term which contains a magnetic quantity and the
two equations which describe the magnetic field do not contain
any electrical field quantity.

VOEZE,VOB:O

€0

V x E =0,V xB=puyJ

Expressed in terms of the potential fields, these equations are
equivalent to

1 p po [ J
_ Par,a=t0 [ 2y
¢ Ameg / R 1 | R

v v

p is the cause, ¢ and E are the results. J is the cause, A and B
are the results. The forces are assumed to be transmitted either
with infinite speed or with finite speed such that sufficient time is
allowed for an equilibrium situation to develop.

If time varying fields are considered, the equations V e E and
V e B remain the same but the other two equations require mod-
ification.

When conditions are changing only slowly with respect to time,
it is called quasi-static. When conditions are changing rapidly, it
is called time varying (radiation effects).

1820 Oerstead demonstrated that an electric current affects a
compass needle. In 1831 Faraday showed that a time changing
magnetic field will produce an electromotive force.

_40
dt

The change in flux may result from

em.f = (10.1)
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e A time changing flux linking a stationary path
e Relative motion between flux and a closed path
e Combination of the above two

The first one is called the transformer e.m.f. The second one is
called motional e.m.f.

Consider an arrangement of a conducting loop with a gal-
vanometer in the loop and either a permanent magnet or a current
carrying coil placed near the conducting loop. Considering vari-
ous situations the following observations can be made.

Place a magnet near the
conducting loop

No current flows
through the

galvanometer
Move the magnet The gal-
towards the loop vanometer

registers a

current
Reverse the The gal-
direction of vanometer
motion of the deflection
magnet reverses

Reverse the polarity of the
magnet and move the
magnet

The galvanometer
deflection reverses
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5 | Keep the magnet fixed The gal-
and move the coil vanometer
towards the magnet registers a
current
6 || Increase the The
speed of the deflection
magnet increases
7 || Increase the The deflection increases
strength of the
magnet,
8 || Increase the The deflection increases
diameter of the
coil
9 | Fix the speed of the magnet but The deflection of the galvanometer
repeat with the magnet closer to the | increases
coil
10 || Move the magnet The gal-
at an angle to the vanometer
coil deflection
decreases
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11 || Increase the Magnitude

number of turns of the
of the coil current
Imncreases

10.0.1 Transformer e.m.f:

If a closed stationary path in space which is linked with a changing
magnetic field is considered, it is found that the induced voltage
around this path is equal to the negative rate of change of the
total flux through the path.

yﬁE.dz — (10.2)

O 0
Vind = — 50 = _E/B o ds (10.3)

S

but

which results in

%Eodl:—% Beds (10.4)
S

the figures of our right hand indicate the direction of closed
path, and our thumb indicates the direction of ds . A flux density
B, in the direction of ds and increasing with time, thus produces
an average value of £ which is opposite to the positive direction
about the closed path. The rigt handed relationship between the

surface integral and the closed line integral should always be kept
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open surface S
(within loop)
fixed

The B-field 1s changing
—~ giving a changing flux.
In this case B points in
direction arrowed and 1s
increasing

Figure 10.1:

in mind during flux integrations and e.m.f determinations.

%Eodl:—%/Bods (10.5)

applying Stoke’s theorem

/(VXE)OCZS:—%/BOCZS:— %—?ods (10.6)
which results in 95

The e.m.f induced in the loop L defined on the surface S is
equal to the rate of change of magnetic flux enclosed by L
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e=—-dd/dt & =BA

Figure 10.2:

The figure below shows the case of e.m.f induced when a per-
manent magnet is moved into a loop of wire

10.0.2 Motional e.m.f:

please refer to the figure given below. The magnetic flux density
B is costant (in space and in time) and is normal to the plane
containing the closed path.

Let the shorting bar be moving with a velocity v m/s. Let the
bar move a small distance dl in time dt. then dl = vdt. Then the
differential flux change is given by d¢ = BuvLdt. The magnitude
of the e.m.t induced is equal to

d
Vind = —d—(f = —BlLv (10.8)
In the general case where the direction of the movement of the
conductor and the direction of the flux is such that they are not
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orthogonal to each other then the emf induced is given in both
magnitude and direction by

Vind = 55(’0 X B)edl (10.9)

Lenz’s Law: The polarity of th induced e.m.f is given by Lenz’s
law. The Lenz’s law states that the induced voltage acts to pro-
duce a flux which will try to oppose the original flux change which
is the cause of production of the e.m.f. Th e following figures show
the application of Lenz’s law under various situations.

Change in B

.

B

(increasing)

Copyright © Addison Wesley Longman Inc

Figure 10.4:

The figure below shows different situations and the application
of the Lenz’s law
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(a)
Copyright © Addison Wesley Longman, Inc,

Figure 10.5:

The figure below is another way of looking at Lenz’s law
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A A

(increasing) {decreasing)

e i) d'!.llf
(a) @, >0, TH:-[: (b) d, =0, Wﬁ <0

B
(increasing) (decreasing)

dd
B
(d) &, <0, 5 =0

dib
(e} d <0, Wﬂ <0
Copyright © Addison Wesley Longman, Inc.

Figure 10.6: Different Situations And The E.M.F Induced

10.0.3 Displacement Current density:

Faraday’s law as one of Maxwell’s equation in differential form is
given by

0B

ot
which shows that time cahanging magnetic field produces an elec-

tric field. This electric field has the special property that its line
integral around a closed path is not zero. let us see what happens

VxFE =
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when a time changing electric field is considered. Consider the
point form of the Ampere’s circuital law

VxH = J and see what happens when we take the divergenceVeV xH = (0 = Ve
(10.10)

Since the divergence of curl is identically zero V e J = 0 However

the equation of continuity shows that it can be true only if

dpy
=0 10.11
This is an unrealistic limitation and the formula V x H = J must
be ammended .

Suppose we add an unknown term G to V x H = J, then the
equation becomes

VxH=J+dG (10.12)
Again taking the divergence we have
0=VeJ+Ve( (10.13)
Thus p
Pu
G = 10.14
Ve 5 ( )
Replacing p, by V e D
0 oD
VOG—&(VOD)—VOW (10.15)

from which we obtain for G as

oD
G=—" (10.16)

Ampere’s circuital law in point from then becomes
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The above equation is not derived. It is merely a form that was
obtained which does not disagree with the continuity equation. It
is also consistent all other results. The additional term %—? has
the dimensions of current density , Amp/square meter. Since it
results from a time varying electrical flux density ( or displacement
density), this is called as displacement current density . It is
sometimes denoted by Jy

VxH=J+J,
oD

J, = 2=

47 "ot

we have encountered three types of current density they are
Conduction current density

J=0oF (10.18)
Convection current density
J = pyv (10.19)
Displacement current density
oD
Ji=— 10.20

The total displacement current crossing any given surface is
expressed by the surface integral

D
I;= /Jd ods = oD o ds (10.21)

S S
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and this leads to the time-vaying version of the Ampere’s circuital

law
/(VXH) ds—/Jods+/Jdods—/Jods+/—ods

(10.22)

and applying Stoke’s theorem

%Hudl —I+1; = ]+/ Y ods

(10.23)

What is the nature of displacement current density? Let us
study the simple circuit shown in the figure.

Figure 10.7: Filamentary Conducting Loop In A Time-varying Magnetic
Field

Dr.K.Parvatisam 266
GVP College of Engineering ( Autonomous )



It contains a filamentary loop and a parallel plate capacitor.
With the loop a magnetic field varying sinusoidally with time is
applied to produce an e.m.f about the closed path (the filament
plus the dashed portion between the capacitor plates) which we
shall take as

em.f = Vycoswt (10.24)

Using elementary circuit theory concepts and assuming that the
loop has negligible resistance and inductance, we may obtain the
current in the loop as

I = —wCV,coswt
I €5 cinwt
= —w—sinw
d

where the quantities €, S, d pertain to the capacitor. Let us apply
Ampere’s circuital law about the smaller closed circular path k
and neglect the displacement current for the moment

%H odl = I (10.25)
k

The path and the value of H along the path are both definite
quantities ( although difficult to determine), and ¢, H o dl is a
definite quantity. The current [ is that current through every
surface whose perimeter is the path k . If we choose a simple
surface punctured by the filament , such as the plane circular sur-
face defined by the circular path k , the current is evidently the
conduction current . Suppose now we consider the closed path k
as the mouth of a paper bag whose bottom passes between the
capacitor plates. The bag is not pierced by the filament, and the
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conduction current is zero. Now we need to consider the displace-
ment current, for within the capacitor

D=e¢E=c¢ <% oS wt) (10.26)

and therefore s
I;= _wEVO sin wt (10.27)

This is the same value as that of the conduction current in the
filamentary loop. The application of the Ampere’s circuital law
including the displacement current to the path k leads to a definite
value for the line integral of H . This value must be equal to the
total current crossing the chosen surface . For some surfaces the
current is almost entirely conduction current, but for those sur-
faces passing between the capacitor plates, the conduction current
is zero , and it is the displacement current which is now equal to
the closed line integral of H .

Displacement current is associated with time varying electric
fields and therefore exists in all imperfect conductors carrying
time-varying conduction current. The reason why this additional
current was never discovered experimentally is, it is very very
small compared to the conduction current.
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Maxwell’s Equations

Static Fields

Point
or

Differential Form

Integral Form

Do %EOdl =0
0 l
0 %Bods =0
J. ’
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Maxwell’s Equations

Time varying Fields

Point Integral Form
or
Differential Form

4 N~ N

VeD = p, %Dods = /pudv
VXE = _ 9B s
ot 0B
VeB = 0 %Eodl = —/—ods
oD / 5 ot

= 0

oD
%H.dl = %J.ds—{_%W.dS

l s

. %

VxH = J. + —
K 8tJ %Bods

Dr.K.Parvatisam 270
GVP College of Engineering ( Autonomous )



Maxwell’s equations represent mathematical expressions of cer-
tain experimental results. In this light it is apparent that they
cannot be proved; however , the applicability to any situation can
be verified. As a result of extensive experimental work, Maxwell’s
equations are now believed to apply to all macroscopic situation-
sand they are used, much like conservation of momentum, as guid-
ing principles. They are the fundamental equations of the elec-
tromagnetic fields produced by the source charges and current
densities p and J . If the material bodies are present , in order to
use the Maxwell’s equations, one must also know the applicable
constitutive equations - either experimentally or from a micro-
scopic theory of the particular kind of matter; D = D(E) and
H = H(B)

Maxwell’s integral laws encompass the laws of electrical cir-
cuits. The transition from fields to circuits is made by associat-
ing the relevant volumes, surfaces, and contours with electrodes,
wires, and terminal pairs. Begun in an informal way in Chap. 1,
this use of the integral laws will be formalized and examined as
the following chapters unfold. Indeed, many of the empirical ori-
gins of the integral laws are in experiments involving electrodes,
wires and the like.

The remarkable fact is that the integral laws apply to any com-
bination of volume and enclosing surface or surface and enclosing
contour, whether associated with a circuit or not. This was im-
plicit in our use of the integral laws for deducing field distributions
in Chap. 1.

Even though the integral laws can be used to determine the
fields in highly symmetric configurations, they are not generally
applicable to the analysis of realistic problems. Reasons for this lie
beyond the geometric complexity of practical systems. Source dis-
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tributions are not generally known, even when materials are ide-
alized as insulators and "perfect" conductors. In actual materials,
for example, those having finite conductivity, the self-consistent
interplay of fields and sources, must be described.

Because they apply to arbitrary volumes, surfaces, and con-
tours, the integral laws also contain the differential laws that apply
at each point in space. The differential laws derived in this chapter
provide a more broadly applicable basis for predicting fields. As
might be expected, the point relations must involve information
about the shape of the fields in the neighborhood of the point.
Thus it is that the integral laws are converted to point relations
by introducing partial derivatives of the fields with respect to the
spatial coordinates.

As a description of the temporal evolution of electromagnetic
fields in three-dimensional space, Maxwell’s equations form a con-
cise summary of a wider range of phenomena than can be found

in any other discipline. Maxwell’s equations are an intellectual

achievement that should be familiar to every student of physical

phenomena. As part of the theory of fields that includes contin-

uum mechanics, quantum mechanics, heat and mass transfer, and

many other disciplines, our subject develops the mathematical

language and methods that are the basis for these other areas.
To quote Richard Feynman
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It took the genius of James Clerk Maxwell to unify electricity
and magnetism into a super theory, electromagnetism or classical
electrodynamics (CED), and to realize that optics is a sub-field
of this new super theory. Early in the 20th century, Nobel lau-
reate Hendrik Antoon Lorentz took the electrodynamics theory
further to the microscopic scale and also laid the foundation for
the special theory of relativity, formulated by Albert Einstein in
1905. In the 1930s Paul A. M. Dirac expanded electrodynamics
to a more symmetric form, including magnetic as well as elec-
tric charges and also laid the foundation for the development of
quantum electrodynamics (QED).

Maxwell has made one of the great unifications of physics. Be-
fore his time, there was light, and there was electricity and mag-
netism. The latter two had been unified by the experimental work
of Faraday, Oerstead, and ampere. Then, all of a sudden, light
was no longer “ something else,” but was only electricity and mag-
netism in the new form - little pieces of electric and magnetic fields
which propagate through space on their own.

The first equation - that the divergence of E is the charge
density over ¢ - is true in general. In dynamic as well as in static
fields , Gauss’ law is always valid. The flux of E through any closed
surface is proportional to the charge inside. The third equation is
the corresponding general law for magnetic fields. Since there are
no magnetic charges, the flux of B through any closed surface is
always zero. The second equation that the curl of E is —%—E’ , is
Faraday’s law and was discussed . It is also generally true . The
last equation has something new . We have seen before the part
of it which holds for steady currents. In that case we said that
the curl of B is ugdJ , but the correct general expression has a new
part that was discovered by Maxwell.
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Maxwell’s equations are as important today as ever. They led
to the development of special relativity and, nowadays, almost
every optics problem that can be formulated in terms of dielec-
tric permittivity and magnetic permeability (two key constants
in Maxwell’s equations), ranging from optical fiber waveguides
to meta-materials and transformation optics , is treated within
the framework of these equations or systems of equations derived
from them. Their actual solution can, however, be challenging for
all but the most basic physical geometries. Numerical methods
for solving the equations were pioneered by Kane Yee and Allen
Taflove, but went unnoticed for many years owing to the lim-
ited computing power available at the time. Now, however, these
methods can be easily employed for solving electromagnetic prob-
lems for structures as complex as aircraft. By the middle of the
nineteenth century, a significant body of experimental and theo-
retical knowledge about electricity and magnetism had been accu-
mulated. In 1861, James Clerk Maxwell condensed it into 20 equa-
tions. Maxwell published various reduced and simplified forms,
but Oliver Heaviside is frequently credited with simplifying them
into the modern set of four partial differential equations: Fara-
day’s law, Ampére’s law, Gauss’ law for magnetism and Gauss’
law for electricity. One of the most important contributions made
by Maxwell was actually a correction to Ampeére’s law. He had
realized that magnetic fields can be induced by changing electric
fields — an insight that was not only necessary for accuracy but
also led to a conceptual breakthrough. Maxwell predicted an ‘elec-
tromagnetic wave’, which can self-sustain, even in a vacuum, in
the absence of conventional currents. Moreover, he predicted the
speed of this wave to be 310,740,000 m /s — within a few percent
of the exact value of the speed of light. “The agreement of the
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results seems to show that light and magnetism are affections of
the same substance, and light is an electromagnetic disturbance
propagated through the field according to electromagnetic laws”,
wrote Maxwell in 1865. The concept of light was thus unified with
electricity and magnetism for the first time.
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