GROUND IMPROVEMENT TECHNIQUES

(Professional Elective- IV)

Course Code: 20CE1164 L T P C

Pre-requisites: Building Materials and Concrete Technology, Geotechnical Engineering-I,

Geotechnical Engineering-II

Course Outcomes:

At the end of the course, the student will be able to:

CO1: Describe dewatering techniques according to field conditions.

CO2: Identify different grout materials and apply various grouting methods

CO3: Explain various in situ densification methods for granular and cohesive soils.

CO4: Demonstrate basic knowledge about design principles of reinforced soil walls.

CO5: Describe applications of geo-synthetics and methods of soil stabilization.

UNIT-I (10 Lectures)

DEWATERING:

Methods of dewatering- Sumps and Interceptor Ditches- Single, Multistage well points - Vacuum well points- Horizontal wells- Foundation drains-Blanket drains- Criteria for selection fill material around drains, Electro-osmosis.

Learning outcomes:

- 1. Explain about the dewatering (L2)
- 2. Explain methods of dewatering (L2)
- 3. Discuss the merits and demerits of methods of dewatering (L2)

UNIT-II (10 Lectures)

GROUTING:

Objectives of grouting- Grouts and their properties- Grouting methods-Ascending, Descendingand Stage Grouting- Hydraulic fracturing in soils and rocks- Post grout test.

Learning outcomes:

- 1. Explain about grouting (L2)
- 2. Explain about grouts properties (L2)
- 3. Discuss the merits and demerits of various methods of grouting (L2)

UNIT-III (10 Lectures)

IN SITU DENSIFICATION METHODS:

GRANULAR SOILS: Vibration at the ground surface, Impact at the Ground Surface, Vibrationat depth, Impact at depth.

COHESIVE SOILS: Preloading or dewatering, Vertical drains – Sand Drains, Sand wick drains, synthetic drains – Stone and Lime columns – Thermal methods.

Learning outcomes:

- 1. Explain about vibration and impact (L2)
- 2. Explain in situ densification methods of granular and cohesive soils (L2)

3. Discuss the merits and demerits of various in-situ densification methods (L2)

UNIT-IV (10 Lectures)

REINFORCED SOILAND GEOSYNTHETICS:

Reinforced earth: - mechanism- types of reinforcing elements- reinforcement-soil interaction – applications— types of geosynthetics – functions of geosynthetics – properties of geosynthetics. – Geo grids and Geomembranes – Functions and Applications.

Learning outcomes:

- 1. Explain about reinforced soil (L2)
- 2. Explain importance of reinforcement (L2)
- 3. Explain about applications of geosynthetics (L2)

UNIT-V (10 Lectures)

SOIL STABILIZATION:

Cement Stabilization Mechanism, Factors affecting and Properties, Use of Additives, Design of soil cement mixtures, Construction techniques. Lime Stabilization - Type of Admixtures, Mechanism, Factors affecting, design of mixtures, construction. Stabilization using bitumen andemulsions, Stabilization using industrial wastes Construction techniques and applications.

Learning outcomes:

- 1. Explains stabilization importance(L2)
- 2. Explains stabilization type of admixtures, mechanism (L2)
- 3. Discuss the merits and demerits of various methods of stabilization(L2)

TEXT BOOKS:

- 1. Hausmann M.R., "Engineering Principles of Ground Modification", 3rdEdition, McGraw-Hill International Edition, 2002.
- 2. Purushotham Raj, "Ground Improvement Techniques",4th Edition, Laxmi Publications, NewDelhi, 2006.

REFERENCES:

- 1. MoseleyM.P.,"Ground Improvement", 2ndEdition, Blackie Academic and Professional, 2007
- 2. Xanthakos P.P, Abramson, L.W and Brucwe, D.A., "Ground Control and Improvement", 5th Edition, John Wiley and Sons, 2000.
- 3. Robert M. Koerner, "Designing with Geo-synthetics", 2ndEdition, Prentice Hall of India.2000.