# **Physical Chemistry** (Chemical Engineering)

Course Code: 22BC1105 L T P C

Course Outcomes: At the end of the course the student shall be able to

CO1: Apply principles and applications of distribution law (L3)

CO2: Determine reaction rates and propose mechanisms (L3)

CO3: Predict the mechanism of catalytic reactions (L3).

CO4: Use the principles of reactions in equilibria (L3).

CO5: Apply the principles of electrochemistry (L3).

UNIT-I 10 Lectures

### DISTRIBUTION LAW

Statement-Nernst Distribution law, Explanation and limitations of law, Modified Distribution law for association or dissociation of the solute; Applications of Distribution law- Determination of equilibrium constant from distribution coefficient, solvent extraction, Desilverisation of lead, Distribution indicators, Partition chromatography.

# **Learning outcomes:**

At the end of the module the student will be able to

- 1. explain the principles of distribution law (L2)
- 2. apply the principle of solvent extraction to extract the solute (L3)
- 3. determine the Equilibrium constant of an equilibrium (L3)

UNIT-II 10 Lectures

# CHEMICAL KINETICS

Basic Terms, Methods of determining order of reaction, Theories of reaction rates-Collision Theory, Arrhenius Equation and Absolute reaction rates; Simultaneous reactions- Consecutive reactions, Parallel reactions and opposing reactions. Fast reactions-Stopped flow and relaxation techniques

### **Learning outcomes:**

At the end of the module the student will be able to

- 1. apply the methods to determine order of a reaction (L3)
- 2. describe various theories of reaction rates (L2)
- 3. interpret the mechanisms of complex reactions (L2)

UNIT-III: 8 lectures

### **CATALYSIS**

Definition, Types-Homogeneous and heterogeneous catalysis; Characteristics of catalysts, Promoters, Catalytic poisoning, Retardation, Autocatalysis, Activation energy and catalysis; Mechanism of Catalysis; Acid-base catalysis- Protolytic and Prototropic mechanism; Enzyme catalysis- Characteristics of enzyme catalysis, Mechanism of enzyme catalysis (Michaelis-Menten's Mechanism).

### **Learning outcomes:**

At the end of the module the student will be able to

- 1. explain the general properties of catalysts (L2)
- 2. discuss the mechanism of acid- base catalysis (L2)
- 3. interpret the mechanism of enzyme catalysis (L3)

# UNIT-IV: 10 Lectures CHEMICAL EQUILIBRIA

Chemical equilibrium, the law of mass action, factors affecting chemical reactions in solution, Le Chatelier's principle, solubility product. Acid-Base equilibria in water- Ostwald's dilution Law, Strengths of acids and bases, Dissociation of polyprotic acid, Titration curve of weak polyprotic acid (H3PO4); Common ion effect, ionic product of water, Hydrogen ion exponent, Hydrolysis of salts, Degree of hydrolysis, Buffer solutions.

## **Learning outcomes:**

At the end of the module the student will be able to

- 1. determine the dissociation constant of acids and bases (L3)
- 2. interpret titration curve of polyprotic acids (L3)
- 3. explain the concepts of pH and buffer solutions (L2)

UNIT-V 12 Lectures

### **ELECTROCHEMISTRY**

Specific, molar and equivalence conductance-effect of dilution, Arrhenius theory of electrolytic dissociation, Ostwald's dilution Law-Limitations, Debye-Huckel-Onsagar theory of strong electrolytes (Interionic atmosphere Theory); Ionic Product and concepts of activity coefficient.

Electrode potential, Nernst equation, EMF of electrochemical cell, reference electrodes-standard hydrogen electrode, calomel electrode. Electrochemical series, Concentration cell, Construction of glass electrode, determination of pH of given solution using glass electrode. Sensors (Potentiometric and amperometric); Batteries-Classification, Primary Cells-Dry cell, Secondary Cell-Lithium ion cell, Fuel Cell-Alkaline H<sub>2</sub>-O<sub>2</sub> Fuel cell.

### **Learning outcomes:**

At the end of the module the student will be able to

- 1. calculate electrode and cell potentials (L3)
- 2. apply redox principles for construction of batteries (L3)
- 3. explain the significance of theories of electrolytes (L2)

### **Text Books:**

- 1. Arun Bahl, B.S. Bahl and G.D.Tuli, *Essentials of Physical Chemistry*, 16<sup>th</sup>Edition, S. ChandPublications, 2006.
- 2. Puri, Sharma and Pathania, *Physical Chemistry*, 42<sup>nd</sup> Edition, Vishal Publishing Company, 2008.

#### **Reference Books:**

- 1. Glasston & Lewis, *Physical Chemistry*, 2nd Edition, MacMillan Publishers, 1973.
- 2. Atkins, *Physical Chemistry*, 9<sup>th</sup> Edition, W.H. Freeman Publishers, 2010.
- 3. G.H.Jeffery, J.Bassett, Mendham and R.C.Denney, *Vogels textbook of quantitative chemical Analysis*, 5<sup>th</sup> Edition, Longman Group,1989.