SCHEME OF COURSE WORK

Course Details:

So D offanist									
Course Title	Mathematics-I								
Course Code	15BM1101 L T P C 3 0 0 3								
Program:	B.Tech.								
Specialization:	Information Technology								
Semester	I Semester								
Prerequisites	• Basic formulae of differentiation, product rule, and quotient rule.								
	• Basic Integration formulae, integration by parts, definite integrals								
	and properties								
	Basic concept of partial differentiation								
Courses to which it is a prerequisite : For all Engineering Courses									

PROGRAM OUTCOMES:

A graduate of Information Technology Engineering will be able to

- **PO1:** Apply the knowledge of mathematics, science, engineering fundamentals and principles of Information Technology to solve problems in different domains.
- PO2: Analyze a problem, identify and formulate the computing requirements appropriate to its solution.
- **PO3:** Design and develop software components, patterns, processes, Frameworks and applications that meet specifications within the realistic constraints including societal, legal and economic to serve the needs of the society
- PO4: Design and conduct experiments, as well as analyze and interpret data
- **PO5:** Use appropriate techniques and tools to solve engineering problems.
- **PO6:** Understand the impact of Information technology on environment and the evolution and importance of green computing.
- **PO7:** Analyze the local and global impact of computing on individual as well as on society and incorporate the results in to engineering practice.
- **PO8:** Demonstrate professional ethical practices and social responsibilities in global and societal contexts.
- **PO9:** Function effectively as an individual, and as a member or leader in diverse and multidisciplinary teams.
- **PO10:** Communicate effectively with the engineering community and with society at large.
- **PO11:** Understand engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects.
- **PO12:** Recognize the need for updating the knowledge in the chosen field and imbibing learning to learn skills.

Course Outcomes (COs):

1	Develop the ability to solve linear differential equations of first and higher order and
	use the knowledge gain to certain engineering problems.
2	Appraise the Laplace transform technique and use it to solve various engineering
	problems.
3	Apply the techniques of multivariable differential calculus to determine extrema and
	series expansions etc. of functions of several variables.
4	Extend the concept of integration to two and three dimensions and support it through
	applications in engineering mechanics.
5	Generalize calculus to vector functions and interpret vector integral theorems.

Course Outcome versus Program Outcomes:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO-1	S	S										
CO-2	S	Μ										
CO-3	S	S										
CO-4	S	S										
CO-5	S	S										

S - Strongly correlated, M - Moderately correlated, Blank - No correlation

Assessment Methods: Assignment / Quiz / Seminar / Case Study / Mid-Test / End

Teaching-Learning and Evaluation

Week	TOPIC / CONTENTS	Cour se Outc omes	Sample questions	TEACHING- LEARNING STRATEGY	Assessment Method & Schedule
1	Linear differential equations of second higher order with constant coefficients.	CO-1	1. solve $(D^2 + a^2)y = tanax$ 2. Solve $(D^3 - D)y = e^x + 1 + 2x$	Lecture / Problem solving	Assignment (Week 2 - 4) / Quiz-I (Week -8)/ Mid- Test 1 (Week 9)
2	Method of Variation of parameters Cauchy's Linear Differential Equations	CO-1	Solve $(D^2 + 1)y = \sec x$ by method of parameters	Lecture / Problem solving	Assignment (Week 2 - 4)/ Quiz -I (Week -8)/ Mid- Test 1 (Week 9)
3	Orthogonal trajectories, Newton's law of cooling, Models on R-L-C circuits.	CO-1	Show that the family of confocal and coaxial parabolas $y^2 = 4a(x + a)$ where <i>a</i> is an arbitrary constant are self orthogonal.	Lecture / Problem solving	Mid-Test 1 (Week 9)/ Assignment (Week 2 - 4)/ Quiz -I (Week -8)
4	Laplace transform of elementary functions, Properties of Laplace transform, Transforms of Periodic function, Transforms of derivatives and integrals, Multiplication by t^n , division by t	CO-2	Find the Laplace transform of $f(t) = \frac{e^{-t} \sin t}{t}$	Lecture / Problem solving	Mid-Test 1 (Week 9)/ Quiz -I (Week -8)
5	Evaluation of integrals by Laplace transforms, Elementary Inverse transforms, Inverse transform of Derivatives and Integrals.	CO-2	Find the inverse Laplace transform of the following function $\frac{s+2}{s^2(s^2-s-2)}$	Lecture / Problem solving	Mid-Test 1 (Week 9) / Quiz -I (Week -8)

6	Convolution theorem, Unit step function,	CO-2		Lecture /	Mid-Test 1
	second shifting theorem		Using convolution theorem, evaluate $L^{-1}\left\{\frac{s}{(s^2+a^2)^2}\right\}$	Problem solving	(Week 9)/ Quiz -I (Week -8)
7	Unit impulse function, Application of Laplace transforms to ordinary differential equations (initial and boundary value problems)	CO-2	Solve $(D^2 + 4D + 3)y = e^{-t}$ given that $y(0) = y'(0) =$ 1 at $t = 0$ by using Laplace transform.	Lecture / Problem solving	Mid-Test 1 (Week 9) / Quiz -I (Week -8)
8	Total derivative, change of variables Jocobians	CO-3	If $x = u(1 - v)$, $y = uv$, then find $\frac{\partial(u,v)}{\partial(x,y)}$	Lecture / Problem solving	Mid-Test 1 (Week 9) / Quiz -I (Week -8)
9	Mid-Test 1				
10	Taylor's theorem for functions of two variables	CO-3	Find the Taylor's series expansion of $e^x \sin y$ in powers of x and y	Lecture / Problem solving	Mid-Test 2 (Week 18) / Quiz -II (Week -17)/ Assignment (12- 14)
11	Maxima and minima of functions of two variables, Lagrange method of undetermined multipliers	CO-3	In the plane triangle ABC, find the maximum value of $\cos A \cos B \cos C$	Lecture / Problem solving	Assignment (Mid-Test 2 (Week 18) / Quiz -II (Week -17)/ Assignment (12- 14)
12	Non Cartesian Coordinates, Double integrals, Change of order of integration.	CO-3	Evaluate $\int_{-1}^{2} \int_{x^2}^{x+2} dy dx$.	Lecture / Problem solving	Mid-Test 2 (Week 18) / Quiz -II (Week -17)/ Assignment (12- 14)
13	Double integral in polar co-ordinates Triple integrals, Change of variables in double integral.	CO-3	Evaluate $\int_0^{\infty} \int_0^{\infty} e^{-(x^2 + y^2)} dx dy$ by changing to polar coordinates.	Lecture / Problem solving	Mid-Test 2 (Week 18) / Quiz -II (Week -17)
14	Change of variables in triple integral, Simple Applications of multiple integrals : Area enclosed by a plane curves.	CO-3	Evaluate $\int_{x=0}^{1} \int_{y=0}^{x} \int_{z=0}^{x+y} x dz dy dx.$	Lecture / Problem solving	Mid-Test 2 (Week 18) / Quiz -II (Week -17)
15	Differentiation of vectors, Scalar and vector point functions Gradient of a scalar function, properties, Directional derivative, Divergence of a vector point function and it's physical interpretation, Curl of a vector point function, properties, Physical interpretation	CO-4	Find angle between the surfaces $x^2 + y^2 + z^2 = 9$ and $x^2 + y^2 - z = 3$ at (2, -1, 2).	Lecture / Problem solving	Mid-Test 2 (Week 18) / Quiz -II (Week -17)

	of Divergence and Curl of a vector point function, Del applied twice to point functions				
16	Line integral, circulation, work done, surface and volume integrals	CO-5	Evaluate $\iint_{R} e^{2x-3y} dx dy$ over the triangle bounded by $x = 0$, $y = 0$ and $x + y = 1$	Lecture / Problem solving	Mid-Test 2 (Week 18) / Quiz -II (Week -17)
17	Green's theorem in the plane, Stoke's theorem, Gauss Divergence theorem and related problems	CO-5	Verify Divergence theorem for $\overline{F} = 4x\mathbf{i} - 2y^2\mathbf{j} + z^2\mathbf{k}$ taken over the region bounded by the cylinder $x^2 + y^2 = 4, z =$ 0 and $z = 3$.	Lecture / Problem solving	Mid-Test 2 (Week 18) / Quiz -II (Week -17)
18	Mid-Test 2				
19/20	END EXAM				