Course Code: 13EC2214
L P C: 4 0 3

Course Outcomes:
At the end of the course the student will be able to

CO1: Modify the CAD design problems using algorithmic paradigms

CO2: Illustrate Backend Design Concepts

CO3: Illustrate about Modeling and Simulation of Digital Circuits

CO4: Summarize about different Logic Synthesis and its verification

CO5: Analyze physical design problems of FPGA, MCM

UNIT-I
PRELIMINARIES & GENERAL PURPOSE METHODS FOR COMBINATIONAL OPTIMIZATION:
Introduction to Design Methodologies, Design Automation tools, Algorithmic Graph Theory, Computational Complexity, Tractable and Intractable Problems

General Purpose Methods for Combinational Optimization:
Backtracking, Branch and Bound, Dynamic Programming, Integer Linear Programming, Local Search, Simulated Annealing, Tabu search, Genetic Algorithms.

UNIT-II
LAYOUT COMPACTION:

Placement and Partitioning:
Circuit Representation, Wire-length Estimation, Types of Placement Problem, Placement Algorithms, Partitioning

Floor Planning:
Floor Planning Concepts, Shape Functions and Floor plan Sizing

Routing:
Types of Local Routing Problems, Area Routing, Channel Routing, Introduction to Global Routing, Algorithms for Global Routing
UNIT-III
MODELLING AND SIMULATION:
Gate Level Modeling and Simulation, Switch level modeling and simulation

UNIT-IV
LOGIC SYNTHESIS AND VERIFICATION:
Basic issues and Terminology, Binary –Decision diagram, Two – Level Logic Synthesis.

UNIT-V
PHYSICAL DESIGN AUTOMATION OF FPGA’S AND MCM’S:
FPGA technologies, Physical Design cycle for FPGA’s partitioning and routing for segmented and staggered models.

Physical Design Automation of MCM’s:

TEXT BOOKS:

REFERENCES: